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ABSTRACT
Airlines make decisions about pricing and daily service fre-
quency in a competitive environment. We develop a two-
stage game-theoretic model of airline competition, where
airlines make frequency decisions during the first stage and
fare decisions during the second stage with knowledge of
the first stage decisions. We prove that for a simplified two-
player form of this game, with assumptions of unrestricted
seats-per-flight and only non-nonstop passengers, the first-
stage payoff function of each player is concave with respect
to that players frequency strategy. With the same assump-
tions, we also prove that this two-stage game belongs to the
class of sub-modular games. Concavity and sub-modularity
are shown by numerical experiments to hold for one player,
two player, and three player games across a wide range of
parameter values, with quadratic functions of player fre-
quencies providing a good approximation (R2 > 0.9) for
airline payoffs in all cases. We use solve this model for
an 11-airport, four-airline network using the myopic best-
response learning heuristic, and the frequency predictions
from this solution are validated against actual frequency
data from this network. This paper demonstrates that a
two-stage frequency-fare game of airline competition can ex-
hibit properties (concavity and sub-modularity) that allow
for a computationally tractable equilibrium solution across a
wide range of parameter values and a good fit with observed
airline frequencies.
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1. INTRODUCTION
Airlines make capacity and fare decisions in a competi-

tive environment. Capacity decisions, encompassing deci-
sions about frequency of service and seats-per-flight, affect
both the operating costs and revenues of airlines. These
decisions have significant implications for the performance
of the air transportation system as a whole. Over- and
under-allocation of airline capacity has been shown to re-
sult in billions of dollars in costs to airlines and passengers,
wastage of system resources, passenger inconvenience, and
environmental damages ([12] and others, refer to [9] for a
full review). Airline frequency competition in particular has
been shown to be a major driver of increased airport con-
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gestion [15]. Capacity and fare decisions of different airlines
are interdependent, both serving as tools in an airlines com-
petitive arsenal. The interdependency of different airlines
decisions motivates a game theoretic approach to modeling
their decision process. A validated game theoretic model
of airline decision-making could support forecasting of air-
line behavior in different scenarios, and provide insight into
the impacts of different policy rules on air transportation
services. Past studies have developed single-stage game the-
oretic models considering frequency competition (e.g., [7]),
and capacity and fare competition (e.g., [4]). In reality, how-
ever, capacity and fare decisions are made sequentially by
different departments within an airline. Capacity (especially
frequency) decisions are typically made months in advance
of flight departure, with only an approximate knowledge
of what fares will be, while fare decisions are made weeks
to minutes ahead of flight departure. Several studies have
stressed the need to develop two-stage game theoretic mod-
els to account for the sequential nature of these decisions ([6]
and [8], among others; see [9] for a full review), but there
are very few studies that bridge analytical, computational,
and empirical results for such models. We develop a two-
stage frequency and fare competition model, and solve for a
subgame perfect Nash equilibrium. We prove various ana-
lytical properties; demonstrate its tractability across a wide
range of assumptions, scenarios, and parameter values; and
validate its predictions against observed airline behavior.

2. MODEL AND ANALYTICAL RESULTS
We focus on the frequency component of capacity de-

cisions, while holding seats-per-flight constant. Seats-per-
flight decisions, while significant, have limited effect on pas-
sengers’ itinerary choice, and show significantly lower vari-
ability than frequency decisions across time and across flight
segments within an airline [9]. The payoff function for each
airline is given as the difference between revenue and operat-
ing costs. For an airline a in market m (an origin-destination
pair), revenue is computed as

Reva,m = min (MmMSa,m, fa,msa,m) pa,m

where Mm is the market size, sa,m is the seats-per-flight,
pa,m is the fare, fa,m is the daily flight frequency and MSa,m
is the airline’s market share. We use a multinomial logit
model of market share, an approach widely used in litera-
ture. Logit passenger utility is given by a linear combination
of fare and a logarithmic transformation of frequency. Op-
erating costs are modeled as a linear function of frequency



on a given segment, such that Costa,m = ca,mfa,m , where
ca,m is the operating cost per flight. Following the s-curve
model of airline frequency competition, we can model mar-
ket share for carrier a in market m by

MSa,m =
eαm ln(fa,m)− βmpa,m

Nm +
∑
i∈Am

eαm ln(fi,m)− βmpi,m
(1)

Here, Am is the set of airlines in market m, αm and βm
are the utility parameters, and Nm is the utility of the no-fly
alternative. In this model, in the absence of a no fly option,
α = 1, and all else equal, frequency share determines market
share.

Market share can also follow the schedule delay model, as
discussed in [8], which takes into account the discrepancy
between available flight times and the flight times desired
by passengers. In this case, the market share is given by

MSa,m =
e−ϕfa,m

−r− βpa,m

Nm +
∑
i∈Am

e−ϕfi,m
−r− βpi,m

(2)

Here, ϕ and r are frequency parameters. Thus, with ei-
ther the s-curve or schedule delay market share model, the
payoff function of airline a operating in a set of markets Ka

is given by

πa =
∑
m∈Ka

min (MmMSa,m, fa,msa,m) pa,m− ca,mfa,m

Frequency decisions, fa,m, are made in the first stage of
the game, while fare decisions, pa,m, are made in the second
stage. We begin our analysis with a simplified version of
this game: two airlines competing in a single market, with
no connecting passengers, infinite seating capacity, and the
absence of a no-fly alternative. Under these assumptions, for
either the s-curve market share model (1), or the schedule
delay market share model with some parametric assump-
tions (2) we are able to prove the following propositions:

Proposition 1. The second-stage fare game always has
unique pure strategy Nash equilibrium.

Proposition 2. In the first-stage frequency game, each
airline’s payoff πi for i ∈ {1, 2} is concave in airline i’s
own strategy, across plausible parameter ranges.1 That is,

∂2πi
∂fi2

< 0 for i ∈ {1, 2}.

Proposition 3. In the first-stage frequency game, each
airline’s payoff πi for i ∈ {1, 2} is a submodular function
in the overall strategy space.
That is,

∂2πi
∂f1∂f2

< 0 for i ∈ {1, 2}.

By changing the sign of one player’s strategy space, we can
trivially convert the game into a supermodular game. That
is,

∂2πi
∂f1∂f2

> 0 for i ∈ {1, 2}.

1For the s-curve model, this holds for all cases where α <
2.4456, a high value with respect to empirically estimated
ranges, see [5]. See [9] for a discussion of parameter ranges
for the schedule delay model.

Table 1: Approximated Concave Payoff Coefficient
Estimates for Varied Seats per Flight

S γ0 γ1 γ2 γ3 γ4 γ5 R2

1000 122200 18135 -17856 -494 686 -533 0.96
250 122250 18130 -17861 -494 686 -533 0.96
225 122400 18115 -17876 -493 687 -532 0.96
200 122640 18095 -17901 -493 687 -532 0.96
175 123470 18030 -17989 -492 690 -529 0.96
150 125340 17925 -18214 -491 696 -523 0.96
125 129430 17885 -18838 -496 716 -514 0.95
100 136710 18277 -20301 -513 773 -518 0.94
75 142620 20224 -22355 -567 865 -578 0.93
50 104880 27814 -18929 -744 773 -846 0.93

Refer to [9] (working paper, link in reference) for proofs
of these propositions. These results are significant because
they demonstrate that subgame-perfect pure strategy Nash
equilibrium is a credible and tractable solution concept for
our two-stage game. In particular, the existence and unique-
ness results indicate the suitability of pure strategy Nash
equilibrium as a solution concept for the second-stage game.
Concave payoffs, a property not guaranteed for one-stage
models [7], ensure that individual first-stage payoff max-
imization problems are efficiently solvable and that a first
stage equilibrium exists [13], and the supermodularity prop-
erty ensures that several iterative learning dynamics con-
verge to this equilibrium [11]. These analytic results are
obtained for the aforementioned simplified model. Next,
we extend them for more general game settings by relaxing
each of these assumptions. We consider 1-, 2- and 3-player
games; presence of a no-fly alternative; finite seating capaci-
ties; and connecting passengers. Our approach is to solve the
second-stage fare game computationally, generating equilib-
rium fare decisions and profits for every set of frequency
decisions for integer daily frequency values ranging from 1
to 20. Then, we fit quadratic approximations to these profits
as functions of the frequencies of all players. For example,
for a 2-player non-stop market with a no-fly alternative and
with finite seating capacity, we approximate the payoff of
airline 1 as

π1 ∼ γ0 + γ1f1 + γ2f2 + γ3f1
2 + γ4f2

2 + γ5f1f2

where fi is the frequency of airline i and γ’s are the coef-
ficients to be estimated. Varying the parameters α (or ϕ
and r in the schedule delay model), β, N and seating ca-
pacities over large ranges found in literature and practice,
we find an excellent fit (R2 > 0.9, ranging from 0.91 to
0.9998 in plausible parameter ranges) in all cases. The signs
of all estimated coefficients are consistent with submodu-
larity and concavity properties (e.g., γ3 < 0 and γ5 < 0 in
the example above). For example, Table 1 shows estimated
payoff function coefficients for the approximated payoff func-
tion, with varied seats per flight S, α = 1.29, β = −.0045
and N=0.5. In addition, estimated coefficients are consis-
tent with a guaranteed-first state equilibrium according to
the diagonal strict concavity condition for the parameters
ranges tested, given by [13], with a few exceptions in the
high values of α(> 1.7).

Note that every two-player submodular game is also su-



Figure 1: Predicted Versus Actual Frequency, with-
out fixing high frequency segments

Figure 2: Predicted Versus Actual Frequency, fixing
high frequency segments

permodular. Additionally, we confirm the following desir-
able property of quadratic-payoff games of used as approxi-
mations here (for its proof, by application of the generalized
quasi-aggregative game framework in [10], refer to [9]).

Proposition 4. For an N-player game with concave
quadratic submodular payoffs, the myopic best response heuris-
tic, where each player optimizes its payoff against fixed oppo-
nent strategies iteratively, converges to a pure strategy Nash
Equilibrium.

Robustness of these concavity, submodularity and best
response convergence properties across a wide range of pa-
rameter values and competitive scenarios suggests that the
general model is highly tractable and efficiently solvable us-
ing the myopic best response heuristic.

3. AIRLINE NETWORK CASE STUDY
To test the tractability and predictive validity of our model

in practice, we apply it to a 4-airline, 11-airport network in
the Western U.S. The network includes 68 unique carrier
segment pairs. We use route, flight cost, daily frequency,
market demand and fleet data from the Bureau of Trans-
portation Statistics database ([1], [2], [3]) from the first quar-
ter of 2007. The 4 carriers playing the game are taken to
be the 4 major carriers in the network - Southwest Airlines,

United Airlines, US Airways, and Alaska Airlines. The fre-
quencies of small regional carriers were held constant. We
use the concave quadratic submodular payoff functions of
airline frequency fitted to second stage payoffs in the above
section and additionally enforce the aircraft availability con-
straints. Players thus allocate flight frequencies across their
respective networks by solving a constrained quadratic pro-
gram each best response iteration, continuing until conver-
gence. The aforementioned myopic best response heuristic
is found to converge to equilibrium in 6-7 iterations in <1
second of computational time. To calibrate the quadratic
payoff coefficients of this model, we minimize the Mean Ab-
solute Percentage Error (MAPE) of the predicted frequen-
cies against actual frequencies:

MAPE =

∑
cm∈CM

∣∣∣f̂cm − fcm∣∣∣∑
cm∈CM fcm

Here CM is the set of carrier-segments, and f̂cm and
fcm are the predicted and observed frequencies respectively.
We group carrier-segments into four categories (three-player
markets, two-player hub-to-hub markets, other two-player
markets, and one-player markets), with the carrier-segments
within each group assigned a quadratic payoff function with
identical coefficient values, and calibrate the resulting 11
payoff function coefficients using a stochastic gradient ap-
proximation algorithm from [14]), initializing with coef-
ficients estimated for the following parameter values: no
seating restrictions, α = 1.29, β = −.0045 and N=0.5. The
game is run repeatedly until convergence of coefficient es-
timates, with approximated MAPE guiding coefficient up-
dates at each step.

Figure 1 compares actual frequencies (x-axis) and pre-
dicted frequencies (y-axis) in the left panel after payoff co-
efficient calibration. The 45 degree blue line represents per-
fect predictions. Most predictions are found to be near this
line. An overall MAPE of 18.4% is achieved, correspond-
ing to 49% of absolute errors <1, and 78% <2. Notable
outliers are the three highest frequency segments (circled
in Figure 1), which are all flown by Southwest Airlines be-
tween its focus cities (hubs). Fixing these frequencies, rerun-
ning the model, and omitting these frequencies from MAPE
calculations results in an MAPE of 16.7% (Figure 2), sug-
gesting that, except for the under-predictions of the highest
frequencies, the model empirically performs well for most
carrier-segments. We subsequently use this validated model
to perform various scenario analyses. An expanded model
for a network of 34 airports across the United States (OEP
Airports, minus HNL), 9 airlines, and 545 carrier-segments,
similarly converges to an equilibrium in 6-7 iterations in <1
second.

We also examine the out-of-sample performance of the
model: in other words, we calibrate payoff coefficients on
a past quarter, and make frequency predictions in a sub-
sequent quarter, using demand, cost, market, and player
attributes from that quarter as inputs to the model. For
example, training our 11 payoff coefficients on data from Q1
of 2007 and testing on Q4 of 2007, we achieve an MAPE of
20.6% (47% of absolute errors <1, and 72% <2). We can
adjust our predictions for individual carrier-segments by the
direction and magnitude of error for those carrier-segments
in the training data (2007 Q1), if they exist. Using this pro-
cedure reduces our MAPE to 11.2% (72% of absolute errors



Table 2: Model Performance in PDX-SFO Market,
Q4 2007, Calibrated on Q1 2007 data

Carrier True Frequency Predicted Frequency
AS 3.02 3.52
UA 6.11 7.28

Table 3: Model Performance Q4 of 2007, Airport-
Level Flight Count Predictions

Airport Observed Q1 Observed Q4 Predicted Q4
LAX 137 128 132
SJC 60 64 61
LAS 154 167 168
SAN 101 108 110
SMF 70 71 70
SEA 98 105 104
PDX 33 41 43
SFO 67 92 99
ONT 61 61 62
PHX 159 159 153
OAK 88 88 85

<1, and 92% <2). Examining a market present only in our
testing data, and not in our calibration data (PDX-SFO),
we find that our model is still able to approximate individual
observed frequencies (Table 2).

Our model also is able to approximate airline behavior at
higher levels of aggregation. For example, we can examine
the total number of flights associated with a certain airport,
a quantity of interest for decision-makers concerned with
airport congestion. Table 3 shows observed flight counts
at the airports in the network under study in Q1 and Q4
of 2007, and the number of flights predicted by our model
(calibrated on Q1) for Q4. At airports where a significant
increase in traffic levels was observed (e.g. LAS), our model
was able to predict this increase.

4. CONCLUSIONS
This study investigates a two-stage frequency-fare game

model which is behaviorally consistent with the actual air-
line decision process. For simple cases, we are able to prove
various attractive analytical properties of this model indicat-
ing well-behaved and tractable games, with unique equilib-
ria and favorable convergence properties. Using payoff func-
tion approximations, these properties are shown to extend to
more realistic game settings. When applied to a real-world
competitive network, the model converges quickly and hence
is easy to calibrate. The model’s predictions closely approx-
imate actual frequency values, suggesting that refinements
of the model could be pursued for use in scenario analysis,
forecasting, planning, and policy making.
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