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ABSTRACT 

Flight delays impose enormous costs and are further exacerbated by propagation effects. 

Development and evaluation of advanced schedule planning approaches for mitigating propagated 

delays requires primary delay distribution models with a long prediction horizon of several 

weeks-to-months. To address this need, this paper presents a hybrid modeling approach combining 

logistic regression and quantile regression. Using two large datasets, each consisting of 

approximately six million flights, as the training and testing samples, various types of factors 

affecting primary delay distributions are identified. Several new insights are obtained into the 

factors affecting delay distributions. Coefficient estimates are found to have a high statistical 

significance and intuitive interpretation of their signs and relative magnitudes. Results from model 

estimation, validation and testing show that fit values are stable across datasets, thus avoiding 

overfitting. The relative explanatory power of various types of predictive factors – including 

distance factors, seasonality factors, time-of-day factors, airport factors and airline factors – is also 

quantified. A new method is provided for quantifying the fit of the joint model in the form of the 

log-likelihood of the observed data, and the model is shown to provide a considerable 

improvement in log-likelihood. 

 

 

 

Keywords: Flight delays, Primary delays, Delay propagation, Quantile Regression, Logistic 

Regression, Probability Distribution 
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1. INTRODUCTION 
In recent years, flight delays have become prevalent at many major airports in the world. Flight 

delays and disruptions is a serious and widespread problem in the U.S. According to the U.S. 

Department of Transportation (DOT), a flight is considered as delayed if it arrives at the 

destination gate 15 minutes or more after its scheduled arrival time (1). Over the last decade (that 

is, over the last 10 full calendar years, 2005-2014), out of approximately 60 million flight 

operations by major U.S. carriers, about 20.35% flights arrived 15 minutes or more after their 

planned arrival times, 1.78% flights were cancelled and 0.23% flights were diverted, resulting in 

only 77.64% flights arriving within 15 minutes of their scheduled arrival times. 

Flight delays have a significant impact on the U.S. economy. The Total Delay Impact Study 

commissioned by the Federal Aviation Administration (2), estimated the total cost of flight delays 

to the U.S. economy at $31.2 billion in 2007. This includes $8.3 billion in direct costs to the 

airlines and $16.7 billion in passenger delay costs. Another study also focusing on year 2007, the 

U.S. Congress Joint Economic Committee report (3), estimated that flight delays resulted in 

consumption of 740 million additional gallons of jet fuel, costing an additional $1.6 billion in fuel 

costs, and releasing an additional 7.1 million metric tons of carbon dioxide into the atmosphere. In 

addition to the direct costs of delays, airlines also suffer from loss of goodwill and possibly a 

reduced demand for future travel from passengers who suffered large delays on a flight of that 

airline. 

There are many reasons for flight delays. An important reason is the insufficient airport and 

airspace capacity, which fails to meet the requirements of the increasing air traffic demand. Other 

causes of flight delays include extreme weather conditions, mechanical problems, luggage 

problems, airline operational issues, late-arriving aircraft and crews from previous flights, etc. 

Bureau of Transportation Statistics (BTS) website classifies delays based on several predefined 

causes. Over the last 10 full calendar years (2005-2014): ‘late-arriving aircraft delay’ contributed 

34.7%, ‘National Aviation System (NAS) delay’ contributed 33.3%, ‘air carrier delay’ (as a result 

of maintenance or crew problems, aircraft cleaning, baggage loading, fueling, etc.) contributed 

28.2%, ‘extreme weather delay’ (due to tornadoes, blizzards, hurricanes, etc.) contributed 3.5% 

and ‘security delay’ contributed 0.3% of all delays (1). 

Among these delay causes, some can be considered secondary in nature, in the sense that, 

once a delay occurs in one part of the aviation system, these lead to additional delays in other parts 

of the network. This phenomenon is called delay propagation. For example, late-arriving aircraft 

delays result from delay propagation through aircraft connections between flights. Also, some 

fraction of delays categorized as air carrier delays results from delay propagation through crew 

connections between flights. Note that these secondary delays result from original (or primary) 

delays that are caused by other reasons listed above. According to the BTS website for the 

2005-2014 period, for more than 44% of the late-arriving aircraft delays, the primary delays were 

categorized as NAS delays (1). Additionally, around half of the primary delays themselves were 

categorized as NAS delays. NAS delays are those that are caused by non-extreme weather 

conditions, airport operations, heavy traffic volume, and air traffic control. Simply put, NAS 

delays are the delays due to congestion in the air transportation system. 

Among the wide variety of approaches proposed to mitigate congestion and delays, a 

prominent category strives to minimize delay propagation through aircraft, crew and passenger 

connections by constructing schedules that either do not get disrupted often (called robust 

scheduling approaches) or are easy to get back on plan once a delay or disruption occurs (called 

recoverable scheduling approaches) (4). Effectiveness of these propagated delay minimization 
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approaches depends on the probability distributions of primary delays. Note that these scheduling 

decisions need to be made several weeks-to-months ahead of the day-of-operations when the 

actual weather conditions on the day-of-operations are unknown. Therefore, these approaches can 

benefit from good models of primary delay distributions that do not rely on the knowledge of 

actual weather conditions on the day-of-operations. Such models of primary delay distributions are 

beneficial not only to develop approaches for mitigating delay propagation but also to evaluate and 

compare multiple candidate approaches with each other. 

Most of the existing delay models assume knowledge of weather forecasts to some extent. 

Additionally, while many studies aim to model delay averages, models of probability distributions 

of delays are needed. Finally, none of the existing studies explicitly model either overall primary 

delays or congestion-related primary delays, which are the two major focuses of this paper. This 

study models probability distributions of primary delays using only the predictive factors that are 

known several week-to-months in advance, while especially focusing on delays due to congestion. 

Using two large datasets each consisting of approximately six million flights as the training and 

testing samples, various types of important factors affecting primary delay distributions are 

identified. Because of the format of the publicly available data, a hybrid modeling approach is used 

combining logistic and quantile regression. Coefficient estimates are found to have a high 

statistical significance and are intuitive in terms of their signs and relative magnitudes. Results 

from model estimation, validation and testing show that model fit values are stable across datasets, 

thus avoiding overfitting. The relative explanatory power of various types of predictive factors – 

including distance factors, seasonality factors (both weekly and annual), time-of-day factors, 

airport factors and airline factors – is also quantified. Finally, a new method is described for 

quantifying the fit of the joint (logistic and quantile regression) model in the form of the 

log-likelihood of observed data, and the results show that the joint model provides a considerable 

improvement in log-likelihoods in all cases. 

The remainder of the paper is organized as follows. Section 2 summarizes prior literature 

on flight delay models. Section 3 describes the modeling method that combines logistic regression 

and quantile regression techniques. Section 4 describes the data used to build the models. Section 5 

summarizes results and Section 6 concludes. 
 

2. LITERATURE REVIEW 

Several prior studies have focused on the general task of flight delay modeling and prediction. 

They can be classified based on multiple criteria including 1) modeling method, 2) delay 

representation, 3) delay types considered, and 4) prediction time horizon. 

Similar to the modeling method-based classification provided by (5), studies that model 

flight delays can be divided into five categories: a) regression/econometric methods, b) Bayesian 

network methods, c) clustering and classification methods, d) simulation methods and e) Data 

Envelopment Analysis (DEA) methods. The first category includes studies that estimate the 

relationship between delay as the dependent variable and one or more explanatory (independent) 

variables. Specific methods employed by these studies span a wide range including regression 

(6-8), censored regression (9), simultaneous equation model (10), nested Logit (11), Generalized 

AutoRegressive Conditional Heteroscedasticity (GARCH) model (12-13), Multivariate Adaptive 

Regression Splines (MARS) models (5;14), etc. Some past studies (15-17) have used Bayesian 

Networks (BNs) to model the probabilistic relationships among different components of flight 

delays and various factors affecting delays. Bayesian network methods are especially suitable for 

modeling the relationships between the probability distributions of different delay components 

including departure delay, taxi-out delay, en-route delay, taxi-in delay, arrival delay, etc. Another 
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category of past studies has used clustering and classification methods for flight delay prediction 

(18-22). The general idea is to predict delays for a particular day by using historical data to identify 

historical days when the state of the air transportation system was similar to that day. In Bayesian 

network methods as well as clustering and classification methods, the state of the system is often 

described based on weather forecasts, flight volumes, and the planned and executed traffic 

management initiatives (TMIs) on a particular day. A wide variety of simulation tools have been 

developed and used for modeling and predicting flight delays (23-26). Simulation methods can 

model flight delay distributions, but suffer from long run-times (often requiring multiple runs) and 

need a lot of calibration and validation before implementation. While the original classification 

scheme used by (5) does not include the last category (DEA), a number of more recent studies have 

used DEA methods for the estimation of production frontiers wherein one or more of the 

undesirable outputs of the production process are characterized in terms of delay measures such as 

delayed flights percentage, average flight delay (27-28), etc. 

In terms of delay representation, almost all aforementioned studies represent delay in the 

form of average flight delay or number of delayed flights. Only exceptions are those studies which 

use either simulation or Bayesian network methods (15-17;23-26). Some other studies (e.g., (29)) 

have tried to fit certain predefined probability distributions, e.g., Gaussian, Poisson, etc., to flight 

delays. However, none of these studies have tackled the problem of modeling delay probability 

distributions as functions of explanatory variables. This is the problem addressed in this paper. 

In terms of the delay type considered, most of the previous studies fall into one of the two 

categories: they deal either with overall delay per flight (10;12-13;27-28) or with specific 

components of flight delays, such as, departure delay, taxi-out delay, en-route delay, taxi-in delay, 

arrival delay, etc. (16;19-20). Some of the studies (e.g., (8;15;17)) focus specifically on 

propagated delays. However, none of the studies (with the exception of (21)) focus on either 

primary delays or NAS delays. This paper focuses on modeling the primary delays without 

differentiating between different delay components, beyond the exclusion of propagated delays. 

In terms of the prediction horizon being considered, a majority of prior studies focuses on 

the day-of-operations with the aim of improving the response of airlines and/or air traffic 

managers to delays and disruptions. Only a few of these studies, including DEA and production 

frontier approaches (7;27-28) and some regression and econometric approaches (6;8;11) model 

delays without the benefit of the specific weather forecasts and detailed data on flight volumes and 

TMIs. This study falls in this category because over the long-term schedule planning horizon, 

accurate weather forecasts, detailed flight volume data and actual or forecasted TMI information is 

not available. 

In summary, this study models the probability distributions (rather than average values) of 

primary delays (rather than propagated delays) to aid long-term scheduling decisions (rather than 

benefiting short-term decision-making) using a combination of logistic regression and quantile 

regression. This is the first study that models parameterized probability distributions of 

non-propagated delays using public data. Also, despite the flexibility afforded by quantile 

regression in modeling probability distributions, the authors are not aware of any study that uses 

quantile regression for modeling flight delays of any kind. More details of the modeling approach 

are provided in Section 4. 

 

3. DATA AND VARIABLES 

The objective of this study is to model the probability distributions of primary delays several 

weeks-to-months ahead of the actual day-of-operations. Therefore, the analysis is based on data 
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from Airline On-Time Performance (AOTP) database from BTS which is the largest public source 

of flight delay data. It also provides delay causes. It contains planned and actual schedules for 

flights operated by all U.S.-certified air carriers that account for at least 1% of domestic scheduled 

passenger revenues. Data is included on all AOTP-reported flights over the two year time horizon 

2013-2014. The sample size is 6,369,482 for 2013 and 5,819,811 for 2014. The sample is limited 

to non-cancelled and non-diverted flights to ensure the availability of delay causes. Observations 

with missing data for either actual arrival time, or actual departure time, or both, were dropped 

from the analysis, yielding a sample of 6,271,207 flights for 2013 and 5,690,183 flights for 2014. 

AOTP database provides delays categorized as 1) NAS delays, 2) carrier delays, 3) 

late-arriving aircraft delays, 4) extreme weather delays, and 5) security delays. Late-arriving 

aircraft delays are not the focus of this study because they are not primary delays. Also, extreme 

weather and security delays are excluded because together they account for less than 4% of all 

delays. NAS delays are the primary delays due to congestion, and carrier delays are a combination 

of primary delays due to carrier operations and delays propagated through crew connections. 

Modeling only the NAS delays ignores nearly half of the primary delays, while modeling the sum 

of NAS and carrier (NAS+Carr) delays leads to inclusion of some propagated delays (those which 

propagate through crew connections). Therefore two different models are developed, one for NAS 

delays, and another for NAS+Carr delays. 

Based on prior literature, and on data availability several weeks-to-months ahead of the 

day-of-operations, independent variables are categorized into five types: 1) distance factors, 2) 

weekly and annual seasonality factors, 2) time-of-day factors, 4) airport factors, and 5) airline 

factors. The first type includes only the distance (transformed as natural logarithm) between the 

flight’s origin and destination airports as a single continuous variable. Seasonality factors include 

six dummies for day-of-week, Monday through Saturday, with Sunday as reference; and three 

dummies for season-of-year, namely, Spring (March-May), Summer (June-August), and Fall 

(September-November), with Winter (December-February) as reference. Time-of-day factors 

include three departure time dummies and three arrival time dummies. Scheduled local departure 

time at the origin airport and scheduled local arrival time at the destination airport, is divided into 

Night (midnight-6am), Morning (6am-noon), and Afternoon (noon-6pm), with Evening 

(6pm-midnight) as reference. 

Airports are divided into four types depending on congestion level as measured over the 

last decade before the modeling period. The first three types cover the 35 busiest airports in the 

U.S., often called the OEP35 (Operational Evolution Plan 35) airports. Type 1 airports include the 

five most congested OEP35 airports, namely, Newark Liberty International (EWR), John F. 

Kennedy International (JFK), LaGuardia (LGA), Chicago O’Hare (ORD), and San Francisco 

International (SFO). Type 2 airports include 13 moderately congested OEP35 airports, namely, 

Hartsfield-Jackson Atlanta International (ATL), Logan International (BOS), Cleveland Hopkins 

International (CLE), Cincinnati/Northern Kentucky International (CVG), Reagan National (DCA), 

Denver International (DEN), Dallas/Fort Worth International (DFW), Fort Lauderdale-Hollywood 

International (FLL), Washington Dulles International (IAD), Houston George Bush 

Intercontinental (IAH), Chicago Midway International (MDW), Philadelphia International (PHL), 

and Pittsburgh International (PIT). Type 3 airports include the remaining 17 OEP35 airports and 

Type 4 airports serve as reference and include all non-OEP35 airports. 

Similar to (30), airlines are divided into four types: 1) legacy carriers: American Airlines 

(AA), Delta Air Lines (DL), United Air Lines (UA), and US Airways (US); 2) low-cost carriers: 

JetBlue Airways (B6), Frontier Airlines (F9), AirTran Airways (FL), Virgin America (VX), and 
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Southwest Airlines (WN); 3) regional carriers: Endeavor Air (9E), ExpressJet Airlines (EV), 

Envoy Air (MQ), SkyWest Airlines (OO), and Mesa Airlines (YV); and 4) non-continental 

carriers: Hawaiian Airlines (HA), and Alaska Airlines (AS). These are modeled using three 

dummies with non-continental airlines as reference. 

Summary statistics of the independent variables for the cleaned data (as described earlier) 

are shown in Table 1. The ‘Variable’ column also lists the abbreviated variables names (inside 

square brackets). These abbreviated names are used in Tables 2, 3 and 4. 

 

4. MODEL DESCRIPTION 

In the AOTP database, a flight is reported as delayed when it arrives 15 or more minutes late 

compared with its scheduled arrival time. AOTP reports NAS delay and carrier delay as zero for 

any flight that is not delayed. In the year 2013, over 78% flights arrived on-time (i.e., not delayed) 

and hence had zeros for reported NAS delays and carrier delays. Note that, even among the 

delayed flights, the NAS delay and/or carrier delay can equal zero if the delay cause is different 

than these two. As a result, in 2013 data approximately 89% flights had zero NAS delay and 83% 

had zero NAS+Carr delay. Therefore, the delay probability distributions in the dataset have two 

distinct parts: a tall peak at zero and a smooth decreasing curve for positive values. Due to this 

peculiar nature of the distribution, modeling it directly using quantile regression method leads to 

low statistical significance and severe numerical issues in the estimation process. In order to match 

the models closely with the structure of the available data and in order to get statistically 

significant and practically meaningful results, delay distribution model is developed in two phases. 

In the first phase, using logistic regression, a binary dependent variable is modeled such that it 

equals 1 when the relevant (NAS/NAS+Carr) delay is positive and 0 otherwise. This model is 

estimated using all observations in the training dataset. The second phase uses quantile regression 

to model the Cumulative Distribution Function (CDF) of the relevant delay conditioned on the 

relevant delay being positive. This model is estimated using only the observations with positive 

values of the relevant delay. 

In logistic regression, the probability of 𝐷𝑗 > 0, where 𝐷𝑗  is the relevant delay in the 𝑗th
 

observation, is modeled as CDF (π(𝑥𝑗)) of the logistic distribution, given in Equation (1). Here 

𝑥𝑗𝜖𝑅𝑛 is the independent variable vector for the 𝑗th
 observation, 𝑥𝑖𝑗𝜖𝑅 is value of the 𝑖th

 

independent variable in the 𝑗th
 observation, and 𝛽𝜖𝑅𝑛 is the coefficient vector. 

𝑃(𝐷𝑗 > 0|𝑥𝑗) = π(𝑥𝑗) =
𝑒

𝑔(𝑥𝑗)

1+𝑒
𝑔(𝑥𝑗)                          (1) 

𝑔(𝑥𝑗) = ln [
𝜋(𝑥𝑗)

1−𝜋(𝑥𝑗)
] = 𝛽0 + 𝛽1𝑥1𝑗 + 𝛽2𝑥2𝑗 + ⋯ + 𝛽𝑛𝑥𝑛𝑗 = 𝛽0 + ∑ 𝛽𝑖𝑥𝑖𝑗

𝑛
𝑖=1          (2) 

As mentioned earlier, independent variables are classified into five types. First type 

includes a single variable which equals the natural logarithm of the distance between flight’s origin 

and destination airports. Natural logarithm was found to provide better results than using distance 

directly or using any other transformation. Second type includes six day-of-week dummies and 

three season-of-year dummies, third includes six time-of-day dummies, fourth includes six airport 

type dummies, and finally, fifth includes three airline type dummies. The definitions of these types 

and of individual variables within these types were chosen by trial-and-error to find the best model 

specification. 
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Quantile regression (QR) is an extension of the classical ordinary least squares (OLS) 

regression. While OLS regression is used for modeling the mean, quantile regression is a 

collection of models for different quantile functions. It was first introduced by Koenker and 

Bassett, and further developed by Koenker and Hallock (31-32). The QR approach is more robust 

than the OLS approach in the presence of outliers and when the distribution of the dependent 

variable is different from the Gaussian distribution. Both these properties hold for flight delays 

data. Quantile regression estimates a range of different quantiles of the dependent variable, and 

thus provides a more complete characterization of the full effect of the independent variable 

(32-33). 

Consider a random variable 𝑌 whose CDF is given by 𝐹𝑌(𝑦) = 𝑃(𝑌 < 𝑦). Then the 𝜏th
 

quantile of 𝑌 is defined as the inverse of the CDF function, i.e., as 𝑄(𝜏) = 𝑖𝑛𝑓 [𝑦: 𝐹(𝑦) > 𝜏] 
where 0 < 𝜏 < 1. The sample quantile, ξ(τ), analogous to the population quantile, Q(τ), is 

obtained as the solution of the optimization problem, 

min𝜉∈𝑅 ∑ 𝜌𝜏(𝑦𝑗 − 𝜉)𝑗                                    (3) 

where 𝜌𝜏(𝑧) = 𝑧 ∗ (𝜏 − 𝐼(𝑧 < 0)) for 0 < 𝜏 < 1. 𝐼(∙) is the indicator function. When the 

scalar ξ is replaced by a parametric function ξ(𝑥𝑗 , 𝛾) = 𝑥𝑗′𝛾 such that 𝑥𝑗𝜖𝑅𝑛 is the independent 

variable vector for the 𝑗th
 observation and 𝛾𝜖𝑅𝑛 is the coefficient vector, an estimate of the linear 

function of 𝑛 independent variables approximating the 𝜏th
 quantile, can be obtained by solving 

𝛾(𝜏) = 𝑎𝑟𝑔 min𝛾𝜖𝑅𝑛 ∑ 𝜌𝜏(𝑦𝑗 − 𝑥𝑗
′𝛾)𝑗                           (4) 

The vector 𝛾(𝜏) contains the τth
 quantile regression coefficient estimates. 

Quantile regression is used to model the CDF of the relevant (NAS/NAS+Carr) delay 

variable conditioned on the relevant delay being positive. So the CDF under consideration 

(denoted earlier by 𝐹𝑌(𝑦) = 𝑃(𝑌 < 𝑦)) is the conditional CDF 𝐹𝐷𝑗
(𝑦|𝐷𝑗 > 0) = 𝑃(𝐷𝑗 < 𝑦|𝐷𝑗 >

0). As with logistic regression, the set of independent variables is divided into five types, namely, 

distance, seasonality, time-of-day, airport, and airline factors. 

 

5. RESULTS 
Logistic and quantile regression estimation results are described in Sub-sections 5.1 and 5.2 

respectively. Sub-section 5.3 describes the results of 10-fold cross validation for both models and 

out-of-sample testing of both models. Sub-section 5.3 also presents an approach to quantify the 

overall fit provided by the joint logistic and quantile regression model, and presents the joint 

model fit results. In general, because the models are estimated to be used over a long-term time 

horizon of several weeks-to-months before the day-of-operations when only a limited amount of 

information is available about the actual conditions on the day-of-operations, the models are 

expected to have a relatively low goodness-of-fit. While the results are consistent with this 

expectation, the statistical significance of the models is very high. Additionally, the 

goodness-of-fit for the upper quantile models is found to be higher. This is especially noteworthy 

given that typically the larger delays lead to much higher costs than smaller delays and it is 

therefore more critical to model them accurately. 

 

5.1 Logistic Regression Results 

Table 2 summarizes logistic regression estimation results obtained by using 2013 data for model 

training. First four columns provide the coefficient estimates and their statistical significance. 

Plugging these coefficient estimates into Equations 1 and 2 gives the positive delay probability 

estimate for any given flight. A positive (negative) value of any coefficient estimate indicates its 
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increasing (decreasing) effect on the delay probability. Except for the Afternoon Departure Time 

dummy in the NAS+Carr model, the remaining 51 coefficient estimates are statistically significant 

at 1% level (in fact, 50 of them are significant at 0.00000001% level). The McFadden R
2
 is 2.9% 

for the NAS model and 3.2% for the NAS+Carr model, while the Cox-Snell R
2
 value is 2.0% for 

the NAS model and 2.9% for the NAS+Carr model. 

All else equal, probability of having positive primary delays increases with flight distance. 

Monday, Thursday and Friday are the days with highest delay probability which is consistent with 

the fact that, as shown in Table 1, these are the three days with the highest number of flights and 

hence the highest congestion in 2013. Saturday has the lowest delay probability consistent with its 

lowest flight volume. Summer and Winter are found to have higher delay probability than Fall and 

Spring (similar to (30)). All else equal, afternoon departures and afternoon and evening arrivals (in 

other words, flights later in the day) have higher delay probability. Probability of NAS+Carr 

delays peaks later in the day than that for NAS delays possibly because of the inclusion of 

crew-based delay propagation within NAS+Carr delays. Consistent with the airport type 

definitions, Type 1 airports have the highest delay probability, followed by Type 2 airports. The 

lowest delay probability is for airport Types 3 and 4. 

The effects of distance, seasonality, time-of-day and airport factors are similar in NAS and 

NAS+Carr models. However, the effects of airline factors are different because only NAS+Carr 

delays include carrier delays. All else equal (and specifically since the airport effects are controlled 

for) NAS delay probability is the lowest for legacy carriers followed closely by low-cost carriers, 

and is highest for the non-continental carriers. NAS+Carr delay probability, however, is highest for 

low-cost carriers, followed by regional carriers, and is the lowest for the non-continental carriers. 

Two different methods are developed to quantify the relative explanatory power of 

different types of factors. 

 Additive method: First, for each type of factors (e.g., time-of-day, seasonality, etc.), R
2
 

value is calculated using only the intercept and the variables of that type. This process is repeated 

for each of the five types. Then the five R
2
 values are normalized to sum up to 100%. 

 Subtractive method: First, for each type of factors, R
2
 value is calculated using intercept 

and all the variables of types other than that type. Then this is subtracted from the overall model R
2
 

to get a measure of that type’s contribution. This process is repeated for each of the five types. 

Finally the five contributions are normalized to sum up to 100%. 

The last eight columns of Table 2 show the fit contributions for each type of factors. Note 

that the results are very similar for McFadden and Cox-Snell R
2
 values and also for the additive 

and subtractive methods. As expected, distance being a single variable, contributes very little to 

the overall fit with contributions under 4%. Seasonality factors, consisting of nine dummies, 

contribute between 20% and 23% across all cases. Airline factors, consisting of three dummies, 

contribute between 9% and 14% across all cases, with larger contributions to the NAS+Carr model 

than the NAS model in all cases as expected. Time-of-day factors, consisting of six dummies, have 

the largest contribution (42%-44%) to the NAS+Carr model but somewhat lower (29%-30%) 

contribution to the NAS model, while airport factors, also consisting of six dummies, have the 

largest contribution (32%-36%) to the NAS model but somewhat lower (20%-23%) to the 

NAS+Carr model. 

 

5.2 Quantile Regression Results 

Tables 3 and 4 summarize quantile regression results for NAS delay model and NAS+Carr delay 

model respectively. They are obtained using that subset of 2013 data for which the respective 
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delays are positive. In either table, the first 10 columns summarize the coefficient estimates (the 

underlined ones are statistically not significant at 1% level) while the last four summarize the fit 

contributions. An inner product of this coefficient estimate vector with the independent variable 

vector gives the estimated conditional quantiles for any flight. These, together with the positive 

delay probability estimates obtained as described in Sub-section 5.1, provide the estimated CDFs 

of primary delays. A positive (negative) value of any coefficient estimate indicates its increasing 

(decreasing) effect on the corresponding quantile. Though QR models are estimated for all 

quantiles from 5% to 95% in steps of 5%, due to space limitations only those in steps of 10% are 

reported. The unreported quantile (e.g., 10%, 20%, etc.) results are similar to those reported. Also, 

fit contribution results for only the 85% and 95% quantiles are reported due to a) space limitations, 

and b) higher quantiles being more important from a delay-cost perspective. Of the 520 coefficient 

estimates in these two tables, only 42 are not significant at 1% level, out of which 26 are for 

day-of-week dummies. The overall pseudo R
2
 (34) fit value varies between 0.5% and 12.7% for 

NAS model and between 0.9% and 4.2% for NAS+Carr model with a general trend of increasing 

fit with increasing quantiles. 

All quantiles (except 95% quantile of NAS delay) increase with increasing flight distance. 

Seasonality factors contribute less than 10% to the overall fit in all but one of the reported cases. 

Day-of-week effects are weak for all quantiles below 85% with magnitudes less than a minute for 

NAS and less than two minutes for NAS+Carr model. The 85% and 95% quantiles are the lowest 

for Tuesday and Saturday, and they are the highest for Sunday indicating that even though Sunday 

has fewer positive delays (as reflected by logistic regression results), when the delays do occur, 

upper delay quantiles on Sundays are higher than those on other days. Also, most delay quantiles 

for Summer and Spring are higher than those for Winter and Fall. Time-of-day factors contribute 

little to the NAS model fit (<6%), with the highest delay quantiles obtained for morning and 

afternoon departures and evening arrivals. However, the fit contribution from time-of-day factors 

to the NAS+Carr model is higher (9%-20%) with the highest delay quantile value obtained for 

night departures and morning arrivals. 

Airport factors account for a remarkably large fraction of the NAS model fit (78%-93%) 

indicating that variations in NAS delays are explained to a great extent by airport factors. 

Consistent with logistic regression results, NAS delay quantiles are the highest for Type 1 airports, 

followed by Type 2 airports and lowest for Type 4 airports, in almost all cases. Airline factors 

contribute less than 5% to the NAS model fit. In terms of the NAS+Carr model, a large fraction of 

fit contribution comes from airport (39%-47%) and airline factors (33%-39%), which is intuitive. 

For both NAS and NAS+Carr models, regional carriers have higher delay quantiles than legacy 

and low-cost carriers in most cases. 

 

5.3 Ten-fold Cross Validation and Model Testing 

First 12 rows and four columns of Table 5 summarize the ten-fold cross validation results. These 

are obtained by dividing 2013 data randomly into 10 equal parts (folds). Each time nine of those 10 

folds are used for model training and the remaining fold is used for validation. This process is 

repeated 10 times and average R
2
 values thus obtained for training and validation datasets are 

reported. For NAS and NAS+Carr delays, for logistic and quantile regression, validation fit values 

are similar to the corresponding training values, thus eliminating any concerns of model 

overfitting. 

First 12 rows and last four columns of Table 5 summarize the effectiveness of the models, 

estimated using all of 2013 data, over a test dataset consisting of all of 2014 data. As observed 
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from these values, the prediction accuracy (as reflected by the R
2
 fit values) for the 2014 testing 

dataset is very similar to that for the 2013 training dataset, thus highlighting the predictive power 

of each model separately. However, the true predictive ability of the joint model cannot be fully 

quantified through these separate fit values for the individual components. Therefore, a new 

method is developed to assess the joint model’s predictive ability using the concept of likelihood. 

The likelihood of a sample of size 𝑚 is the joint probability of all its data points (𝑑𝑗 , 𝑗 ∈
{1, … , 𝑚}). 

𝑃(𝐷𝑗 = 𝑑𝑗) = {

𝑃(𝐷𝑗 = 0) =
1

1+𝑒
𝛽0+∑ 𝛽𝑖𝑥𝑖𝑗

𝑛
𝑖=1

  … … … … …                                                   if 𝑑𝑗 = 0

𝑃(𝐷𝑗 > 0). 𝑃(𝐷𝑗 = 𝑑𝑗|𝐷𝑗 > 0) =
𝑒

𝛽0+∑ 𝛽𝑖𝑥𝑖𝑗
𝑛
𝑖=1

1+𝑒
𝛽0+∑ 𝛽𝑖𝑥𝑖𝑗

𝑛
𝑖=1

. 𝑃(𝐷𝑗 = 𝑑𝑗|𝐷𝑗 > 0) …  𝑜. 𝑤.
(5) 

where 𝑥𝑖𝑗 is the value of 𝑖th
 independent variable in 𝑗th

 observation and 𝛽𝑖 is the logistic regression 

coefficient of 𝑖th
 independent variable. Quantile regression model gives ξ values such that 

𝜏 = 𝑃(𝐷𝑗 < ξ|𝐷𝑗 > 0) for 𝜏 = 5%, 10%, 15%, … ,95%. Obviously, 𝑃(𝐷𝑗 < 0|𝐷𝑗 > 0) = 0. 

Consider an observation 𝑗 with dependent variable value 𝑑𝑗 > 0. Also, let ξ(𝜏𝑘) < 𝑑𝑗 ≤ ξ(𝜏𝑘+1) 

for some pair (ξ(𝜏𝑘), ξ(𝜏𝑘+1)) of consecutive estimated quantiles. All reported delays in the 

AOTP database are integer minutes. Let 𝑙 be the number of integers between ξ(𝜏𝑘) and ξ(𝜏𝑘+1). If 

the likelihood of each of those 𝑙 integers is assumed to be equal, then 𝑃(𝐷𝑗 = 𝑑𝑗|𝐷𝑗 > 0) =
𝜏𝑘+1−𝜏𝑘

𝑙
. In addition to 𝜏 = 0%, 5%, 10%, 15%, … , 95%, a model for 𝜏 = 99% is also estimated. 

For 𝑑𝑗 > ξ(99%) (which is true for less than 0.25% observations), it is assumed that 𝑃(𝐷𝑗 =

𝑑𝑗|𝐷𝑗 > 0) = 𝑃(𝐷𝑗 = 𝑑𝑗 ′|𝐷𝑗 > 0) 𝑠. 𝑡. 𝑑𝑗′ ∈ (ξ(95%), ξ(99%)) ∩ ℤ. 

Thus, 𝑃(𝐷𝑗 = 𝑑𝑗|𝐷𝑗 > 0) values are calculated and substituted in Equation (5) to get 

𝑃(𝐷𝑗 = 𝑑𝑗) for the 𝑗th
 observation. Overall likelihood of the sample is given by ∏ 𝑃(𝐷𝑗 = 𝑑𝑗)𝑚

𝑗=1 . 

Third-last row of Table 5 reports the natural logarithm of the overall sample likelihood (called the 

sample log-likelihood). Same calculation is repeated for a naïve model and the log-likelihood is 

reported in second-last row of Table 5. Naïve model contains no independent variables except for 

an intercept term in both logistic and quantile regressions. The last row provides the differences 

between the log-likelihoods of the full and naïve models. Log-likelihood of training and testing 

samples is significantly higher for the full model than for the naïve model suggesting that the 

explanatory variables significantly improve likelihood of the observed data. In all cases, the 

observed data is more likely under the full model than under the naïve model by a multiplier 

ranging between 𝑒𝑥𝑝(239,955) and 𝑒𝑥𝑝(282,923). Thus the full model improves the 

log-likelihood by 3.5% to 4.9% compared with the naïve model.
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6. CONCLUSIONS 
This study modeled the probability distributions of primary delays using public data by employing 

a model combining logistic and quantile regression methods. This is the first study to model 

parameterized probability distributions of non-propagated delays. Also, this is the first study to use 

the quantile regression method for modeling flight delays. Two types of primary delays are 

modeled, namely, NAS delays and the sum of NAS and carrier (NAS+Carr) delays. Several of the 

results are as expected and intuitively understandable. When controlled for other factors, primary 

delays are found to be higher for longer (compared with shorter) distance flights, higher during 

summer months of June through August (compared with rest of the year), higher during later 

(compared with earlier) times of the day, lower during Tuesdays and Saturdays (compared with 

rest of the week) and especially higher at EWR, JFK, LGA, ORD and SFO (compared with the 

other) airports. 

Additionally, several new insights are obtained for the first time due to the explicit 

modeling of delay probability distributions rather than delay averages. For example, when 

controlled for other factors, though the positive delay probability is found to be similar for 

low-cost and legacy carriers, the longer delays are considerably less probable for the low-cost 

carriers compared with the legacy carriers. Also, while seasonality and time-of-day factors explain 

more than half of the variation in the positive delay probabilities, they explain very little of the 

variation in higher delay quantiles. Airport factors, on the other hand, explain probabilities of 

longer delays far better than they explain the positive delay probabilities. Airline factors’ 

contribution to explaining upper quantiles of NAS delays is negligible, but they explain the upper 

quantiles of NAS+Carr delays significantly better. Moreover, airline factors explain a lot larger 

proportion of the variability in upper NAS+Carr delay quantiles than that in positive delay 

probabilities. None of these insights could have been obtained without explicit parameterized 

modeling of delay quantiles. 

These models are motivated by the need to accurately assess advanced schedule planning 

approaches for reducing propagated delays. Therefore as next steps in this research, these models 

need to be evaluated in that context. Integration of these primary delay distributions into airline 

operations simulation environments will enable airlines to develop and implement effective 

strategies to reduce delay propagation, in turn leading to improved airline profits, reduced 

passenger inconvenience, more efficient airport operations, and reduction in adverse 

environmental effects. Also, while this study focused on long-term time horizon of several 

weeks-to-months, it would also be interesting to extend these models to the day-of-operations 

context to enable assessment of the effectiveness of delay recovery methods.  
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TABLE 1  Data Description and Summary Statistics 
Type Sub-Type Variable 2013 2014 

Distance Distance ln (Distance) [ln (Dist)] na na 

Seasonali

ty 

Day-of-W

eek 

Monday [Mon] 949,139 (14.90%)  846,414 (14.87%) 

Tuesday [Tue] 929,959 (14.60%)  821,775 (14.44%) 

Wednesday [Wed] 931,240 (14.62%) 841,922 (14.80%) 

Thursday [Thu] 944,819 (14.83%) 840,238 (14.77%) 

Friday [Fri] 952,033 (14.95%) 845,619 (14.86%) 

Saturday  [Sat] 767,525 (12.05%) 690,033 (12.13%) 

Sunday [Reference] 894,767 (14.05%) 804,182 (14.13%) 

Season-of

-Year 

Spring [Spr] 1,612,212 (25.71%) 1,461,041 (25.68%) 

Summer [Sum] 1,661,182 (26.49%) 1,506,069 (26.47%) 

Fall [Fal] 1,536,234 (24.50%) 1,405,930 (24.71%) 

Winter [Reference] 1,461,579 (23.31%) 1,317,143 (23.15%) 

Time–of 

–Day 

Departure 

Time 

Period 

Night (midnight-6am) [Night Dep] 91,008 (1.45%) 86,560 (1.52%) 

Morning (6am-noon) [Morn Dep] 2,488,481 (39.68%) 2,274,748 (39.98%) 

Afternoon (noon-6pm) [Aft Dep] 2,404,754 (38.35%) 2,149,523 (37.78%) 

Evening (6pm-modnight) [Ref] 1,286,964 (20.52%) 1,179,352 (20.73%) 

Arrival 

Time 

Period 

Night (midnight-6am) [Night Arr] 99,010 (1.58%) 93,453 (1.64%) 

Morning (6am-noon) [Morn Arr] 1,720,154 (27.43%) 1,560,265 (27.42%) 

Afternoon (noon-6pm) [Aft Arr] 2,389,925 (38.11%) 2,153,566 (37.85%) 

Evening (6pm-modnight) [Ref] 2,062,118 (32.88%) 1,882,899 (33.09%) 

Airport 

Origin 

Airport 

Type 

Type 1 Departure Airport [Dep Type 1] 789,857 (12.60%) 741,863 (13.04%) 

Type 2 Departure Airport [Dep Type 2] 1,685,090 (26.87%) 1,565,435 (27.51%) 

Type 3 Departure Airport [Dep Type 3] 1,833,785 (29.24%) 1,634,272 (28.72%) 

Type 4 Departure Airport [Ref] 1,962,475 (31.29%) 1,748,613 (30.73%) 

Destinatio

n Airport 

Type 

Type 1 Arrival Airport [Arr Type 1] 788,497 (12.57%) 740,408 (13.01%) 

Type 2 Arrival Airport [Arr Type 2] 1,684,126 (26.86%) 1,563,899 (27.48%) 

Type 3 Arrival Airport [Arr Type 3] 1,832,631 (29.22%) 1,633,791 (28.71%) 

Type 4 Arrival Airport [Ref] 1,965,953 (31.35%) 1,752,085 (30.79%) 

Airline 
Type of 

Airline 

Legacy Carriers [Legacy] 2,189,183 (34.91%) 2,216,688 (38.96%) 

Low-Cost Carriers [Low-Cost] 1,666,231 (26.57%) 1,622,640 (28.52%) 

Regional Carriers [Regional] 2,189,714 (34.92%) 1,617,025 (28.42%) 

Non-continental Carriers [Ref] 226,079 (3.61%) 233,830 (4.11%) 

Total na na 6,271,207  5,690,183 
Note: ‘na’= not applicable 
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TABLE 2  Logistic Regression Results 
Type Variable 

Estimate 𝑃𝑟(< |𝑧|) 
NAS NAS+Carr 

McFadden Cox-Snell McFadden Cox-Snell 
NAS NAS+Carr NAS NAS+Carr Add. Sub. Add. Sub. Add. Sub. Add. Sub. 

Intercept Intercept -3.27 -2.55 <2E-16 <2E-16 na na na na na na na na 

Distance ln (Dist) 0.10 0.09 <2E-16 <2E-16 2.78% 2.12% 2.79% 2.12% 3.34% 1.43% 3.35% 1.42% 

Seasonality 

Mon 0.11 0.09 <2E-16 <2E-16 

22.39% 22.74% 22.40% 22.73% 20.30% 21.63% 20.33% 21.60% 

Tue -0.03 -0.07 6E-11 <2E-16 

Wed 0.05 -0.01 <2E-16 0.0031 

Thu 0.16 0.15 <2E-16 <2E-16 

Fri 0.11 0.11 <2E-16 <2E-16 

Sat -0.18 -0.15 <2E-16 <2E-16 

Spr -0.08 -0.14 <2E-16 <2E-16 

Sum 0.09 0.10 <2E-16 <2E-16 

Fal -0.45 -0.42 <2E-16 <2E-16 

Time-of-Day 

Night Dep 0.23 -0.58 <2E-16 <2E-16 

29.93% 29.77% 29.92% 29.78% 43.95% 42.59% 43.86% 42.67% 

Morn Dep 0.50 -0.31 <2E-16 <2E-16 

Aft Dep 0.62 0.01 <2E-16 0.0731 

Night Arr -0.54 -0.23 <2E-16 <2E-16 

Morn Arr -0.17 -0.44 <2E-16 <2E-16 

Aft Arr 0.09 -0.19 <2E-16 <2E-16 

Airport 

Dep Type 1 0.48 0.49 <2E-16 <2E-16 

35.71% 32.91% 35.68% 32.94% 22.01% 20.66% 22.03% 20.64% 

Dep Type 2 0.29 0.32 <2E-16 <2E-16 

Dep Type 3 0.09 0.12 <2E-16 <2E-16 

Arr Type 1 0.67 0.38 <2E-16 <2E-16 

Arr Type 2 0.30 0.08 <2E-16 <2E-16 

Arr Type 3 0.02 -0.09 2E-10 <2E-16 

Airline 

Legacy -0.41 0.37 <2E-16 <2E-16 

9.18% 12.46% 9.20% 12.44% 10.40% 13.70% 10.43% 13.67% Low-Cost -0.39 0.76 <2E-16 <2E-16 

Regional -0.17 0.58 <2E-16 <2E-16 
Note: ‘na’= not applicable
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TABLE 3  Quantile Regression Results for the Conditional CDF of NAS Delays 
Type Variable Coefficient Estimates for Different Quantiles Fit Contrib. (85%) Fit Contrib. (95%) 

5% 15% 25% 35% 45% 55% 65% 75% 85% 95% Add. Sub. Add. Sub. 

Intercept Intercept 0.10 -1.11 -1.94 -1.45 0.61 3.80 7.15 10.58 18.26 45.79 na na na na 

Distance ln (Dist) 0.23 0.75 1.18 1.44 1.45 1.31 1.13 0.98 0.46 -1.80 0.03% 0.05% 0.16% 0.17% 

Seasonali

ty 

Mon -0.05 -0.14 -0.25 -0.26 -0.24 -0.20 -0.19 -0.22 -0.63 -2.56 

7.99% 4.50% 12.38% 6.00% 

Tue -0.01 -0.05 -0.08 -0.10 -0.11 -0.15 -0.32 -0.60 -1.80 -7.58 

Wed 0.08 0.25 0.42 0.52 0.53 0.54 0.54 0.62 0.44 -1.09 

Thu -0.06 -0.13 -0.20 -0.23 -0.21 -0.19 -0.14 -0.13 -0.54 -2.01 

Fri -0.07 -0.23 -0.38 -0.52 -0.55 -0.56 -0.59 -0.85 -1.32 -4.06 

Sat -0.08 -0.22 -0.30 -0.35 -0.39 -0.41 -0.51 -0.72 -1.78 -6.02 

Spr 0.01 0.08 0.23 0.34 0.49 0.69 1.00 1.69 3.58 10.40 

Sum -0.10 -0.32 -0.43 -0.43 -0.13 0.28 0.88 2.03 5.18 14.43 

Fal -0.11 -0.36 -0.55 -0.74 -0.92 -1.04 -1.27 -1.77 -2.34 -0.75 

Time-of-

Day 

Night Dep 0.34 0.82 1.59 1.95 1.95 1.57 1.23 1.16 1.31 -1.64 

4.08% 2.11% 5.38% 2.20% 

Morn Dep 0.45 1.14 1.91 2.72 3.11 3.00 3.14 3.54 4.14 3.00 

Aft Dep 0.23 0.62 1.03 1.57 1.99 2.22 2.53 3.35 4.91 8.89 

Night Arr -0.30 -1.08 -1.76 -2.44 -2.95 -3.54 -3.91 -4.97 -7.14 -11.61 

Morn Arr 0.22 0.97 1.75 1.90 1.40 0.90 0.35 -0.38 -1.77 -3.75 

Aft Arr -0.11 -0.16 -0.27 -0.54 -0.82 -1.05 -1.46 -2.31 -3.54 -4.94 

Airport 

Dep Type 1 0.33 1.02 1.71 2.38 2.78 3.25 4.16 5.90 9.01 14.28 

83.19% 92.18% 78.75% 90.27% 

Dep Type 2 0.12 0.49 0.83 1.18 1.51 1.82 2.33 3.26 5.31 10.10 

Dep Type 3 0.13 0.48 0.83 1.03 1.09 1.15 1.22 1.38 1.67 1.46 

Arr Type 1 1.12 3.66 6.85 8.36 10.11 13.10 19.44 30.30 48.55 84.24 

Arr Type 2 0.44 1.26 2.32 3.62 4.14 4.20 4.88 6.56 10.42 24.47 

Arr Type 3 0.22 0.74 1.31 2.02 2.35 2.17 2.20 2.36 3.17 6.26 

Airline 

Legacy -0.29 -0.76 -0.96 -1.22 -1.13 -0.69 -0.20 0.47 1.04 4.12 

4.72% 1.16% 3.32% 1.36% Low-Cost -0.62 -1.78 -2.76 -3.59 -3.55 -2.93 -2.22 -1.37 -0.50 3.19 

Regional -0.43 -1.04 -1.42 -1.59 -1.13 -0.33 0.34 1.51 3.47 11.22 

Pseudo 𝑅2 0.5% 1.4% 2.7% 3.7% 3.4% 3.3% 4.1% 5.9% 8.8% 12.7% na na na na 
Note: ‘na’= not applicable. Underlined coefficient estimates are statistically not significant at 1% level 
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TABLE 4  Quantile Regression Results for the Conditional CDF of NAS+Carr Delays 
Type Variable Coefficient Estimates for Different Quantiles Fit Contrib. (85%) Fit Contrib. (95%) 

5% 15% 25% 35% 45% 55% 65% 75% 85% 95% Add. Sub. Add. Sub. 

Intercept Intercept -1.22 -3.01 -1.35 3.19 6.03 8.58 11.72 17.21 29.87 63.29 na na na na 

Distance ln (Dist) 0.59 1.43 1.69 1.43 1.37 1.41 1.43 1.40 1.16 2.77 0.37% 0.26% 0.42% 0.47% 

Seasonali

ty 

Mon -0.30 -0.68 -0.61 -0.51 -0.47 -0.58 -0.62 -0.94 -1.90 -5.95 

7.64% 8.62% 7.20% 9.33% 

Tue -0.16 -0.28 -0.20 -0.25 -0.32 -0.49 -0.81 -1.55 -3.29 -10.64 

Wed -0.06 -0.04 0.03 0.01 -0.05 -0.14 -0.23 -0.56 -1.45 -4.89 

Thu -0.28 -0.58 -0.68 -0.65 -0.69 -0.83 -1.10 -1.74 -2.88 -6.96 

Fri -0.29 -0.69 -0.83 -0.77 -0.85 -1.04 -1.29 -1.85 -3.08 -7.55 

Sat -0.12 -0.06 0.06 0.05 -0.02 -0.22 -0.39 -0.84 -2.24 -6.97 

Spr -0.17 -0.21 -0.12 0.12 0.37 0.77 1.43 2.74 5.43 11.24 

Sum -0.30 -0.54 -0.46 -0.02 0.49 1.30 2.58 4.81 9.21 16.89 

Fal -0.15 -0.21 -0.36 -0.50 -0.70 -0.91 -1.20 -1.36 -0.93 0.20 

Time-of-

Day 

Night Dep 2.94 4.13 3.85 3.25 3.09 3.40 4.22 6.51 11.86 45.05 

9.65% 9.50% 19.45% 14.32% 

Morn Dep 0.95 3.17 3.22 2.70 2.56 2.62 3.07 3.75 5.25 11.11 

Aft Dep 0.31 0.86 1.27 1.08 1.05 1.08 1.36 1.81 3.01 8.28 

Night Arr -0.42 -0.81 -0.82 -0.64 -0.87 -1.44 -1.95 -2.77 -3.76 -7.00 

Morn Arr 2.55 5.36 3.73 3.28 3.24 3.48 3.91 4.77 7.09 17.58 

Aft Arr 0.12 0.29 0.24 -0.04 -0.34 -0.64 -1.23 -2.12 -3.42 -4.04 

Airport 

Dep Type 1 0.74 1.85 2.82 3.28 3.87 4.83 6.21 7.87 8.93 3.20 

44.33% 46.49% 39.56% 40.82% 

Dep Type 2 0.89 2.18 3.28 3.63 4.01 4.66 5.82 7.19 8.23 1.44 

Dep Type 3 0.68 1.68 2.44 2.58 2.63 2.75 3.35 4.15 4.88 0.13 

Arr Type 1 0.55 1.79 2.57 3.57 5.50 8.54 13.38 20.81 31.60 48.65 

Arr Type 2 0.06 0.23 0.46 0.78 0.99 1.17 1.71 2.96 6.33 18.21 

Arr Type 3 0.02 -0.09 -0.24 -0.27 -0.36 -0.68 -0.91 -0.92 -0.45 5.89 

Airline 

Legacy -0.49 -0.72 -0.30 -0.04 0.45 1.06 2.01 3.51 5.69 8.22 

38.01% 35.13% 33.38% 35.06% Low-Cost -0.96 -2.62 -3.53 -3.39 -2.98 -2.94 -3.02 -3.53 -5.29 -12.22 

Regional -0.44 -0.39 0.60 1.37 2.48 4.13 6.99 11.37 18.27 28.83 

Pseudo 𝑅2 0.9% 2.7% 1.9% 3.0% 2.0% 3.3% 3.7% 2.2% 2.5% 4.2% na na na na 
Note: ‘na’= not applicable. Underlined coefficient estimates are statistically not significant at 1% level
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TABLE 5  Ten-Fold Cross Validation Results and Out-of-Sample Testing Results 
Results Type Ten-Fold Cross Validation Results Out-of-Sample Testing Results 

Delay Type NAS Delay NAS+Carr Delay NAS Delay NAS+Carr Delay 

Dataset 2013 Training 2013 Validation 2013 Training 2013 Validation All 2013 All 2014 All 2013 All 2014 

Logistic 

Regression R
2
 

McFadden 2.85% 2.87% 3.23% 3.22% 2.88% 3.01% 3.23% 3.42% 

Cox-Snell 2.03% 2.06% 2.82% 2.79% 2.01% 2.20% 2.89% 3.24% 

Quantile 

Regression 

Pseudo R
2
 

𝜏 = 5% 0.46% 0.44% 0.89% 0.88% 0.47% 0.61% 0.90% 1.02% 

𝜏 = 15% 1.44% 1.42% 2.84% 2.83% 1.44% 1.67% 2.84% 3.09% 

𝜏 = 25% 2.70% 2.68% 3.21% 3.20% 2.70% 3.08% 3.22% 3.52% 

𝜏 = 35% 3.66% 3.64% 2.19% 2.18% 3.66% 4.07% 2.19% 2.48% 

𝜏 = 45% 3.35% 3.34% 2.05% 2.04% 3.36% 3.99% 2.05% 2.20% 

𝜏 = 55% 3.28% 3.26% 2.23% 2.22% 3.28% 3.65% 2.23% 2.24% 

𝜏 = 65% 4.10% 4.09% 2.68% 2.66% 4.11% 4.20% 2.68% 2.44% 

𝜏 = 75% 5.86% 5.84% 3.33% 3.31% 5.87% 5.47% 3.34% 2.74% 

𝜏 = 85% 8.81% 8.78% 4.00% 3.97% 8.82% 7.55% 4.00% 3.01% 

𝜏 = 95% 12.65% 12.56% 4.11% 4.05% 12.66% 11.05% 4.13% 3.74% 

Joint Model 

Log-Likelihood 

Full Model na na na na -5,097,164 -4,918,529 -7,573,460 -7,446,381 

Naïve Model na na na na -5,357,231 -5,158,484 -7,856,383 -7,717,994 

Difference na na na na 260,068 239,955 282,923 271,613 
Note: ‘na’= not applicable 


