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Abstract: Aiming at benefits, airfare is made by airlines considering the situation of its company, 

including micro-environment and macro-environment, such as company, market, other airlines’ competitive 

strategy, competitive landscape, government policy and regulations, and other consideration. Usually, Airfare 

is a Nash Equilibrium solution to game among airlines as players who want the best outcome for themselves 

and take the actions of others into account. Because of market developing, to obtain great market share and 

optimize the benefit the players pay more attention to the strategy corresponding to other players, main factors 

affecting the outcome and benefit, and how and how much to affect the airfare. Thus, after discussing the 

factors related to airfare determine, this paper develops hybrid models of airline competition in capacity 

allocation games with embedded airfare regression under the game-theoretic and econometric model.  

The hybrid model of airline competition includes multi-stage games, where each stage determines 

corresponding fare considering main influencing factors of airline in the specific market. The number of 

stages is determined by how many main airlines in the same market, and the sequence of stages depends on 

the competitiveness of airlines in the same market. The approximate results of accurate scenario analysis by 

developed model will contribute to airline strategic decision-support, the actual capacity allocation decision 

(frequency and seats) and airfare. Moreover, it will reveal the relationship respectively between airfare and 

cost (fuel price and labor expenses), economic influence, sum of passenger, distance, time zone, and even 

some interaction influence. 
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1 Introduction 

    From the view of market, market share is competed among airlines who already have a market share and 

potentially about to enter the market of the company. Their sharing market is a typical dynamic process. The 

competition games are stable when Nash Equilibrium (NE) reaches which mean every airline (the play) 

should take other airline’s (player’s) strategy into account. So, the decision of market share and airfare is a 

game-theoretic question. 

    From the view of airline, airfare is affected by many factors, such as external factors that are 

macroeconomic, competitors, seasons, time zone, and so on; operating factors which are operating cost of 

labor, fuel, and so on, distance, passengers, and so on; and some consideration.  

    Therefore, airlines’ capacity and fare decisions under competition over a network are modeled as a 

complicate game.  Multi-stage competition game model for the market are put forward and every stage is an 

airfare regression model for a specific airline operation approximate. 

2 Literature Review 

 

2.1 Economic Model for air fare predict 

From the view of economic, air fare decision is related to some factors…… (temporary absence) 

2.2 Game Model for Airline Competition 

2.2.1 Airline Planning Literature 

Many parts of the airline planning process (Fig. 1) 

have been extensively studied in literature. Airline 

planning process involves deciding the set of flights 

to be operated, the set of aircraft and crew to 

operate those flights, and the set of fares on those 

flights. These decisions are typically made 

sequentially. Long-term decisions about Fleet 

Planning and Route Planning are made before 

medium-term Schedule Development decisions. 

Fleet Planning is the long-term strategic process of 

deciding an airline’s fleet of aircraft, while Route 

Fig 1: Overview of the Airline Planning Process (Belobaba, 

2015b) 



Planning is the subsequent process of deciding the set of routes (or airport pairs) to offer flights on. 

Though fleet and route planning decisions are made using various analytical methods based on a 

variety of technical, economic, financial and other considerations (Belobaba, 2015b), advanced 

operations research (OR) models for these two steps are rarely used in practice and rarely studied in 

OR literature, despite their obvious connection with ACA decisions. This paper does not focus on 

fleet and route planning decisions. At the other end of the spectrum, short-term tactical decisions 

including, Sales and Distribution, Airport Resource Management, and Operations Control are not 

related to ACA decisions, and hence this project does not focus on them. This paper focuses on 

medium-term decisions of Schedule Development (SD), and Pricing and Revenue Management 

(PRM). 

Within Schedule Development, the four sub-steps – Frequency Planning, Timetable Development, 

Fleet Assignment and Aircraft Routing (rotations) – are typically performed sequentially. They are 

followed by the Crew Scheduling step, which is itself divided into two sub-steps called Crew Pairing 

and Crew Rostering. Existing literature includes sophisticated optimization-based decision-support 

tools and models for Fleet Assignment, Aircraft Routing and Crew Scheduling, but has a very limited 

coverage of Frequency Planning, and Timetable Development problems. 

Aircraft Routing and Crew Scheduling problems have been extensively studied and 

mixed-integer optimization models have been developed for minimizing operating costs to find 

feasible aircraft and crew itineraries (Arabeyre, Fearnley, Steiger, and Teather, 1969; Barnhart et al., 

1998; Cordeau, Stojkovic, Soumis, and Desrosiers, 2001; Klabjan, Johnson, and Nemhauser, 2001; 

Cohn and Barnhart, 2003; Saddoune, Desaulniers, Elhallaoui, and Soumis, 2012). Aircraft Routing 

and Crew Scheduling decisions, however, do not affect ACA decisions; do not affect passenger 

demand and revenues; and do not interact with competitors’ decisions. Therefore, they are not 

directly related with this project. 

Frequency Planning, Timetable Development and Fleet Assignment problems, in contrast, are 

directly related to the ACA decisions. Many prior studies address the fleet assignment problem, 

sometimes also integrated with Aircraft Routing and Crew Scheduling problems. Hane et al. (1995) 

provided a fleet assignment optimization model assuming fixed passenger demand for each flight leg. 

Their model was subsequently extended by Barnhart, Kniker, and Lohatepanont (2002) to account 

for passenger connections, and also for passenger spill and recapture phenomena. This model was 

further enhanced to capture passenger itinerary choice in recent studies (Atasoy, Salani, and Bierlaire, 

2014; and Wang, Klabjan, and Shebalov, 2014). While no study in prior literature has tackled the 

stand-alone Timetable Development optimization problem, some prior studies have incorporated 

incremental timetable decisions into the fleet assignment problems, either through minor adjustments 



in flight departure times using time-windows (e.g., Desaulniers et al., 1997; Rexing et al., 2000; 

Sherali, Bae, and Haouari, 2013) or through binary decisions about whether or not to operate some 

optional flight legs (e.g., Lohatepanont and Barnhart, 2004; Sherali, Bae, and Haouari, 2010; Atasoy, 

Salani, and Bierlaire, 2014; and Wang, Klabjan, and Shebalov, 2014). However, none of these studies 

explicitly incorporate frequency planning decisions. Pita, Barnhart, and Antunes (2013) and Cadarso, 

Vaze, Barnhart, and Marin (2015) are the only two studies that incorporate frequency decisions into 

other schedule development problems. Both these studies jointly optimize frequency planning, 

approximate timetable development and fleet assignment, and thus directly deal with the ACA 

decisions. 

Pricing and Revenue management (PRM) focus on optimizing revenue from the sale of available 

flight seating capacity. Over the last few decades, various heuristic and exact methods have been 

developed and applied for optimizing PRM decisions (e.g., Belobaba, 1989; McGill and Van Ryzin, 

1999; Clough, Jacobs, and Gel, 2014). For excellent review of the methods, concepts and literature in 

this area, please refer to Talluri and van Ryzin (2004) or Belobaba (2015a). Despite the 

interdependence between PRM and SD decisions, OR literature on PRM optimization does not 

overlap with SD optimization literature (except, to a limited extent, in some studies like Jacobs, 

Smith and Johnson (2008)). In addition to algorithmic tractability concerns associated with solving 

the resulting giant integrated optimization problem, there are two main reasons for this separation. 

First, the timelines for the two tasks are very different with most of the SD decisions made several 

months or weeks ahead of the flight departure time and PRM decisions made a few weeks to a few 

minutes ahead of the time of the flight departure time. Second, within an airline’s organization, PRM 

departments operate almost independently of the SD departments. Therefore, the state-of-the-art 

scheduling models typically assume fixed fares per flight, per itinerary, or per passenger segment. 

These assumed fares reflect their best judgment of the true fare levels to be expected, which is 

necessarily an approximation. Similarly, state-of-the-art PRM models assume pre-specified flight 

frequency and seats-per-flight, which in turn are previously determined based on an approximate 

understanding of the fare values to be expected. Thus, ACA decisions and PRM decisions are 

interrelated, but follow different timelines and are made by different departments in an airline 

organization. Therefore, this project focuses on ACA and PRM decisions in a two-stage model. 

 

2.2.2 Airline Competition Literature 

None of the studies from the airline planning literature above address game-theoretic aspects of 

airline competition. There is a separate stream of studies focusing on airline competition. These 

studies apply the concept of Nash equilibrium (or its refinements, approximations or generalizations) 



to find a solution of the airline competition game. These studies can be classified into two different 

categories: generic and airline-specific. Generic category includes studies using general economic 

models (such as Cournot, Bertrand, and Stackelberg models) of oligopoly competition between firms 

based of quantity and prices (e.g., Brander and Zhang, 1993; Norman and Strandenes, 1994; 

Hendricks, Piccione, and Tan, 1999; Brueckner, 2002; Brueckner and Flores-Fillol, 2007; and 

Aguirregabiria and Ho, 2010). Airline-specific category includes models customized for airline 

competition context and hence is relevant for this paper. 

In the airline-specific competition studies, market share is usually represented by a logit-type 

model (such as multinomial logit or nested logit) with the passenger utility being primarily a function 

of flight frequency and average fare. Hansen (1990) was the first to solve for an equilibrium of an 

airline frequency competition game using real-world data. He solved airline profit optimization 

problems repeatedly till near-convergence to a single-stage frequency equilibrium for a large case 

study with 52 U.S. airports and 28 airlines. In a series of studies especially focusing on the European 

aviation network (Adler, 2001; 2005; Adler and Berechman, 2001; Adler and Smilowitz, 2007; Adler, 

Pels, and Nash, 2010), Adler and colleagues developed – in some cases as a standalone single-stage 

game, and in other cases as the second stage following a route planning stage in a two-stage game – a 

simultaneous equilibrium approach for frequency, fare, and seat decisions. More recently, Vaze and 

Barnhart (2012a; 2012b; and 2015) solved a single-stage frequency competition game to obtain a 

Nash equilibrium. A few other studies have also developed and solved single-stage game models to a 

Nash equilibrium involving simultaneous frequency, fare and seat decisions (Brueckner, 2010), 

simultaneous frequency and fare decisions while holding seats-per-flight constant (Hong and Harker, 

1992; Pels, Nijkamp, and Rietveld, 2000; and Hansen and Liu, 2015), simultaneous frequency and 

seat decisions while holding fares constant (Wei and Hansen, 2007), or fare decisions while holding 

frequency and seats constant (Aguirregabiria and Ho, 2012). 

Many of these studies (e.g., Dobson and Lederer, 1993; Norman and Strandenes, 1994; Schipper, 

Rietveld, and Nijkamp, 2003; Brueckner and Flores-Fillol, 2007; Hansen and Liu, 2015; Vaze and 

Barnhart, 2015) have noted the need for developing and solving two-stage game models with the first 

stage consisting of frequency and/or seats-per-flight decisions, and the second stage consisting of 

fare decisions, in order to be consistent with the actual sequence in which decisions are made in the 

airlines. However, the analytical and computational treatment of two-stage capacity-fare games is 

very limited in the existing literature, and focuses exclusively on single-market, two-airline games. 

Dobson and Lederer (1993) acknowledge the tractability issues and make several simplifying 

assumptions (including assuming a single aircraft size across the network) and use heuristic methods 

for solving the single-market, two-airline game. Schipper, Rietveld, and Nijkamp (2003) analyze the 



change in passenger welfare due to deregulation by analyzing the shift from monopoly to duopoly 

equilibria for a single-market, two-airline game by focusing only on symmetric equilibria. Brueckner 

and Flores-Fillol (2007) provide a brief discussion of the comparative statics of the single-market, 

two-airline game through two propositions that compare the results with the corresponding 

single-stage game. Hansen and Liu (2015) provide a small numerical example of single-market, 

two-airline game. Norman and Strandenes (1994) and Vaze and Barnhart (2015) only focus on the 

one-stage game. In summary, though behaviorally consistent with the actual airline process, all 

existing studies on two-stage capacity-fare games focus on single-market, two-airline games; do not 

provide any tractability results for handling larger, more realistic networks; do not model passenger 

connections; do not address decisions about seats-per-flight; and do not provide any empirical 

validation of their results. This paper addresses all of these challenges. 

3 Multi-Stage Hybrid Model of Airline Competition 

Here airlines’ capacity and fare decisions under competition over a network are modeled as a multi-stage 

game. Consistent with the actual airline planning process, the capacity allocation decisions (i.e., flight 

frequency and seats on each non-stop flight segment) are made every stage of the game deals with the 

approximate decisions about average fare in each market. This section describes the framework using the 

terms market, airline and time. A market is defined as an ordered pair of airports between which passengers 

wish to travel, an airline is defined as a carrier operating in the market, and time is defined as a compute cycle.  

Therefore, to estimate the airfare airline decision, here creates a hybrid model of airline competition with 

multi-stage games involving capacity and pricing competition, where Two-Stage Least Square Analysis 

(2SLS) is used for analysis of structural equations, and embedded airfare regression is used for specific airline. 

The general model express as follow,  

{

𝑦1̂ = 𝑓1(𝐸𝑥)
𝑦2̂ = 𝑓2(𝐸𝑥, 𝑦1)

𝑦3̂ = 𝑓3(𝐸𝑥, 𝑦1, 𝑦2)
… …

                                                                     (1) 

where 𝑦𝑖 ̂  ( 𝑖 = 1,2, … . ) are endogenous variables representing the approximate airfare (yield: revenue per 

passenger mile RPM) of ranking 𝑖 carrier (player) in the specific market which is determined within the 

system of equations; 𝑦𝑖  ( 𝑖 = 1,2, … . ) are exogenous variables representing the real airfare of ranking 𝑖 

carrier (player); 𝐸𝑥 are exogenous variables representing affecting factors of airfare. Within the simultaneous 

equation every equation represents a sub-game among the whole competitive market. The number of 

equations, similarly, the number of sub-games is determined by how many main carriers there are in one 

market. From this model, we know that the ranking first carrier has priority of determining its airfare in the 



market, then the ranking second carrier turn, the ranking third carrier turn, etc. Each equation is expressed as a 

linear combination of fare including economy factors, carrier, cost, time, market share, and capacity, some 

transformation of factors, and possibly some other factors.  

Some notations are described next. Let 𝐸𝐶𝑂𝑁 be economic factors, 𝐶𝐴𝑅𝑅𝐼𝐸𝑅 the airline, 𝐶𝑂𝑆𝑇 be 

flight operating cost, 𝑇𝐼𝑀𝐸 be compute cycle, 𝑀𝐴𝑅𝐾𝐸𝑇_𝑆𝐻𝐴𝑅𝐸 be airline market share in a market, 

𝐶𝐴𝑃𝐴𝐶𝐼𝑇𝑌 be flight frequency and seats. The general form fare decision model of each carrier in specific 

market with a compute cycle is denoted by: 

𝐴𝐼𝑅𝐹𝐴𝑅𝐸~𝐸𝐶𝑂𝑁 + 𝐶𝐴𝑅𝑅𝐼𝐸𝑅 + 𝐶𝑂𝑆𝑇 + 𝑇𝐼𝑀𝐸 + 𝑀𝐴𝑅𝐾𝐸𝑇_𝑆𝐻𝐴𝑅𝐸 + 𝐶𝐴𝑃𝐴𝐶𝐼𝑇𝑌       (2) 

where 𝐴𝐼𝑅𝐹𝐴𝑅𝐸 means 𝑦𝑖 ̂ as an objective variable in the airline-specific competition studies, 𝐸𝐶𝑂𝑁 +

𝐶𝐴𝑅𝑅𝐼𝐸𝑅 + 𝐶𝑂𝑆𝑇 + 𝑇𝐼𝑀𝐸 + 𝑀𝐴𝑅𝐾𝐸𝑇_𝑆𝐻𝐴𝑅𝐸 + 𝐶𝐴𝑃𝐴𝐶𝐼𝑇𝑌 means a linear combination of the main 

factors as explanatory variables for approximate 𝐴𝐼𝑅𝐹𝐴𝑅𝐸.  

Moreover, the image of hybrid model on airline competition can be described as follow (Fig.2),   

 

Fig. 2 Multi-Stage Modeling Image 

4 Case Study for Non-stop Domestic Market  

    Analytical development for hybrid model of airline competition implements with simplified versions of 

real-world domestic networks and carriers, including networks consisting of 35 airports (OEP35), 5 main 

airlines (WN, DL, UA, AA, and US). 

4.1 Data for Case Study 

The Hybrid model involves many kinds of factors from deferent databases which are publicly available 

from BTS (Bureau of Transportation Statistics) and BEA (Bureau of Economic Analysis), including: 



 Airline Origin and Destination Survey (DB1B) database: This database, which is used to 

determine air traffic patterns, air carrier market shares and passenger flows, is a 10% sample of 

airline tickets from reporting carriers collected by the Office of Airline Information of the Bureau 

of Transportation Statistics. From DB1B the aggregated quarterly data (from the first quarter of 

1993 to the fourth quarter of 2014) are downloaded and filtered, such as airfare each market from 

origin to destination (OEP35 airport, the 35 major US airports) by unique carrier (five main airline, 

Southwestern, Delta, United, American, and US airway), passengers (sum of passengers per quarter 

each market), distance (the mileages each market).  

 Air Carrier Financial Schedule P-12(a) Database: This database contains monthly reported fuel 

costs, and gallons of fuel consumed, by air carrier and category of fuel use, including scheduled and 

non-scheduled service for domestic and international traffic regions. After processing the 

downloaded data, the quarterly fuel price per gallons can be obtained. 

 Air Carrier Financial Schedule P-5.2 Database: This database contains detailed quarterly aircraft 

operating expenses for large certificated U.S. air carriers. It includes information such as flying 

expenses for maintenance of flight equipment, equipment depreciation costs, and total operating 

expense. After filtering, the cost of labor for flight operating can be obtained.  

 Air Carrier Financial T-100 Domestic Segment database: This database contains domestic and 

international airline market and segment data which frequently used by the aviation industry, the 

press, and the legislature to produce reports and analyses on air traffic patterns, carrier market 

shares, as well as passenger, freight, and mail cargo flow within the aviation mode. After 

processing the downloaded data, flight frequency and seats can be obtained. 

 National Economic Accounts Database: From this database, GDP percent of change from 

preceding period data can be download. After processing the data, all GDP change data are 

obtained quarterly. 

Using market, carrier, and time data, all data selected from different database are merged. 

4.2 Airfare Regression Model for Aggregate Data 

Five airlines AA, DL, UA, US, and WN are selected in this equation, and thirty-five top airports from 

OEP35 are listed here. After checking the official data from US Department Of Transportation, here selects 

data span across a time of 88 quarters from the first quarter of 1993 to the fourth quarter of 2014. Each 

observation is the combination of a quarter, airline, origin and destination. There are over 130,000 

observations after filtering in the dataset. Lots of various models specifications are tried and found the 



following model work well due to the R-Square and p-value.  

    Given a general regression equation in the simultaneous equation: 

𝑙𝑜𝑔𝐴𝐼𝑅𝐹𝐴𝑅𝐸(𝑡)~𝑙𝑜𝑔𝐹𝑈𝐸𝐿(𝑡 − 1) + 𝑙𝑜𝑔𝐿𝐴𝐵𝑂𝑅 + 𝐺𝐷𝑃_𝐶𝐻𝐴𝑁𝐺𝐸 + 𝑄𝑈𝐴𝑅𝑇𝐸𝑅1𝑡𝑜4 + 𝑄𝑈𝐴𝑅𝑇𝐸𝑅2𝑡𝑜4 + 𝑄𝑈𝐴𝑅𝑇𝐸𝑅3𝑡𝑜4

+ 𝐴𝐴𝑡𝑜𝑊𝑁 + 𝐷𝐿𝑡𝑜𝑊𝑁 + 𝑈𝐴𝑡𝑜𝑊𝑁 + 𝑈𝑆𝑡𝑜𝑊𝑁 + 𝑇𝐼𝑀𝐸𝑍𝑂𝑁𝐸_𝑎𝑏𝑠𝑑𝑖𝑓𝑓_1𝑡𝑜0 + 𝑇𝐼𝑀𝐸𝑍𝑂𝑁𝐸_𝑎𝑏𝑠𝑑𝑖𝑓𝑓_2𝑡𝑜0

+ 𝑇𝐼𝑀𝐸𝑍𝑂𝑁𝐸_𝑎𝑑𝑏𝑠𝑖𝑓𝑓_3𝑡𝑜0 + 𝐷𝐼𝑆𝑇1 + 𝐷𝐼𝑆𝑇2 + 𝐷𝐼𝑆𝑇3 + 𝑃𝐴𝑆𝑆𝐸𝑁𝐺𝐸𝑅𝑆_𝑆𝑈𝑀 + 𝐹𝑅𝐸𝑄𝑈𝐸𝑁𝐶𝑌

+ 𝐹𝑅𝐸𝑄_𝑂𝑇𝐻𝐸𝑅𝑆 + 𝑆𝐸𝐴𝑇𝑆 + 𝑙𝑜𝑔𝐹𝑈𝐸𝐿(𝑡 − 1)_𝐴𝐴 + 𝑙𝑜𝑔𝐹𝑈𝐸𝐿(𝑡 − 1)_𝐷𝐿 + 𝑙𝑜𝑔𝐹𝑈𝐸𝐿(𝑡 − 1)_𝑈𝐴

+ 𝑙𝑜𝑔𝐹𝑈𝐸𝐿(𝑡 − 1)_𝑈𝑆 + 𝑙𝑜𝑔𝐿𝐴𝐵𝑂𝑅_𝐴𝐴 + 𝑙𝑜𝑔𝐿𝐴𝐵𝑂𝑅_𝐷𝐿 + 𝑙𝑜𝑔𝐿𝐴𝐵𝑂𝑅_𝑈𝐴 + 𝑙𝑜𝑔𝐿𝐴𝐵𝑂𝑅_𝑈𝑆 

(2) 

where 𝐴𝐼𝑅𝐹𝐴𝑅𝐸(𝑡) is the dependent variable that is air fare in cents per mile (also called yield). Because 

𝐴𝐼𝑅𝐹𝐴𝑅𝐸(𝑡) and the main explanatory numerical variables 𝐹𝑈𝐸𝐿(𝑡 − 1) and 𝐿𝐴𝐵𝑂𝑅 don’t have stationary 

relationship, logarithmic transformation of those three variables is used to express their relationship well. 

Most importantly, since the log of airfare is a linear function of log of fuel prices and labor consumption, the 

model is easy to interpret. The model coefficient directly gives us the percentage change in fares when the fuel 

price changes by 1%, or the labor changes by 1%. Additionally,  𝑄𝑈𝐴𝑅𝑇𝐸𝑅 , 𝐶𝐴𝑅𝑅𝐼𝐸𝑅 

(𝐴𝑡𝑜𝑊𝑁, 𝐷𝐿𝑡𝑜𝑊𝑁, 𝑈𝐴𝑡𝑜𝑊𝑁 𝑎𝑛𝑑 𝑈𝑆𝑡𝑜𝑊𝑁), and 𝑇𝐼𝑀𝐸𝑍𝑂𝑁𝐸 are dummy variables, and 𝐷𝐼𝑆𝑇 is piecewise linear 

function. 

Explanatory variables in our model are: 

 𝐹𝑈𝐸𝐿(𝑡 − 1) is fuel price in cents per gallon during the previous quarter. After trying many specifications, 

the lag of 1 quarter seemed to work the best. 

 𝐿𝐴𝐵𝑂𝑅 contains the sum of all kinds of labor investment of the predicted carrier quarterly for airline 

operation and flight operating. 

 𝐺𝐷𝑃_𝐶𝐻𝐴𝑁𝐺𝐸 is percent change quarterly from preceding period which stands for the economic effect. 

 𝑄𝑈𝐴𝑅𝑇𝐸𝑅1𝑡𝑜4, 𝑄𝑈𝐴𝑅𝑇𝐸𝑅2𝑡𝑜4 𝑎𝑛𝑑 𝑄𝑈𝐴𝑅𝑇𝐸𝑅3𝑡𝑜4 are quarter dummy variables, which give the quarter 

effects compared to the fourth quarter. 

 𝐴𝑡𝑜𝑊𝑁, 𝐷𝐿𝑡𝑜𝑊𝑁, 𝑈𝐴𝑡𝑜𝑊𝑁 𝑎𝑛𝑑 𝑈𝑆𝑡𝑜𝑊𝑁 are carrier dummy variables, which are the carrier compared to 

WN carrier. 

 𝑇𝐼𝑀𝐸𝑍𝑂𝑁𝐸_𝑎𝑏𝑠𝑑𝑖𝑓𝑓_1𝑡𝑜0, 𝑇𝐼𝑀𝐸𝑍𝑂𝑁𝐸_𝑎𝑏𝑠𝑑𝑖𝑓𝑓_2𝑡𝑜0, 𝑇𝐼𝑀𝐸𝑍𝑂𝑁𝐸_𝑎𝑑𝑏𝑠𝑖𝑓𝑓_3𝑡𝑜0 are time zone dummy variables, 

which are absolute time zone differences between origin and destination compared to zero time zone. 

 𝐷𝐼𝑆𝑇1, 𝐷𝐼𝑆𝑇2, 𝐷𝐼𝑆𝑇3 represent a piecewise linear function of distance with NONSTOP domesticmarket 

from origin endpoint to destination endpoint. The breakpoints in the piecewise linear relationships are at 

500 miles and 1500 miles. 

 𝑃𝐴𝑆𝑆𝐸𝑁𝐺𝐸𝑅𝑆_𝑆𝑈𝑀 is the sum of different airline transporting passengers in the same quarter.   



 𝐹𝑅𝐸𝑄𝑈𝐸𝑁𝐶𝑌, same as scheduled departures which are takeoffs scheduled of the expected airline at an 

airport quarterly, as set forth in published, are the sum of flights per quarter. 

 𝐹𝑅𝐸𝑄_𝑂𝑇𝐻𝐸𝑅𝑆 are the sum of takeoffs scheduled at an airport quarterly except the predicted airline. 

 𝑆𝐸𝐴𝑇𝑆 are the sum of installed seats of the expected airline in an aircraft (including seats in lounges) 

exclusive of any seats not offered for sale to the public by the carrier within one quarter; provided that in 

no instance shall any seat sold be excluded from the count of available seats.  

 𝑙𝑜𝑔𝐹𝑈𝐸𝐿(𝑡 − 1)_𝐴𝐴, 𝑙𝑜𝑔𝐹𝑈𝐸𝐿(𝑡 − 1)_𝐷𝐿, 𝑙𝑜𝑔𝐹𝑈𝐸𝐿(𝑡 − 1)_𝑈𝐴, 𝑙𝑜𝑔𝐹𝑈𝐸𝐿(𝑡 − 1)_𝑈𝑆 are interactions between carrier 

dummy variables and 𝑙𝑜𝑔𝐹𝑈𝐸𝐿(𝑡 − 1). 

 𝑙𝑜𝑔𝐿𝐴𝐵𝑂𝑅_𝐴𝐴, 𝑙𝑜𝑔𝐿𝐴𝐵𝑂𝑅_𝐷𝐿, 𝑙𝑜𝑔𝐿𝐴𝐵𝑂𝑅_𝑈𝐴, 𝑙𝑜𝑔𝐿𝐴𝐵𝑂𝑅_𝑈𝑆 are interactions between carrier dummy variables 

and 𝑙𝑜𝑔𝐿𝐴𝐵𝑂𝑅. 

    The aggregate data, 36,421 observations, are taken into account, where the observations are filtered in 

terms of more than 90% market share carried by AA, DL, UA, US and WN. Using equation (2). The results 

are: 

Coefficients: (1 not defined because of singularities) 

                            Estimate Std. Error  t value Pr(>|t|)     

(Intercept)                2.032e+00  3.479e-02   58.394  < 2e-16 *** 

logFUEL(t-1)              2.337e-01  1.647e-02   14.186  < 2e-16 *** 

logLABOR                 4.650e-01  3.985e-02   11.668  < 2e-16 *** 

PASSENGERS_SUM        -2.879e-05  5.275e-07  -54.581  < 2e-16 *** 

GDP_CHANGE                 5.956e-03  5.849e-04   10.182  < 2e-16 *** 

QUARTER1to4                1.258e-02  4.139e-03    3.040 0.002364 **  

QUARTER2to4                3.130e-02  4.053e-03    7.724 1.16e-14 *** 

QUARTER3to4                6.514e-03  4.052e-03    1.607 0.107972     

AAtoWN                     1.727e+00  8.467e-02   20.399  < 2e-16 *** 

DLtoWN                     1.674e+00  5.128e-02   32.647  < 2e-16 *** 

UAtoWN                     8.399e-01  6.177e-02   13.598  < 2e-16 *** 

UStoWN                     1.101e+00  1.044e-01   10.548  < 2e-16 *** 

TIMEZONE_absdiff_1to0      5.022e-02  3.569e-03   14.068  < 2e-16 *** 

TIMEZONE_absdiff_2to0      7.497e-02  7.328e-03   10.231  < 2e-16 *** 

TIMEZONE_absdiff_3to0     -1.146e-01  1.080e-02  -10.611  < 2e-16 *** 

DIST1                      -2.901e-03  1.662e-05 -174.564  < 2e-16 *** 

DIST2                      -8.944e-04  9.342e-06  -95.748  < 2e-16 *** 

DIST3                       3.196e-04  1.383e-05   23.107  < 2e-16 *** 

FREQUENCY                 4.205e-04  1.256e-05   33.474  < 2e-16 *** 

FREQ_OTHERS                2.255e-07  3.109e-06    0.073 0.942185     

SEATS                     -1.450e-06  8.304e-08  -17.456  < 2e-16 *** 

logFUEL(t-1)_AA           -1.108e-01  1.707e-02   -6.492 8.61e-11 *** 

logFUEL(t-1)_DL           -6.798e-02  1.678e-02   -4.051 5.11e-05 *** 

logFUEL(t-1)_UA           -3.108e-03  1.698e-02   -0.183 0.854777     

logFUEL(t-1)_US           -5.813e-02  1.887e-02   -3.081 0.002065 **  

logLABOR_AA              -3.224e-01  4.904e-02   -6.573 5.01e-11 *** 

logLABOR_DL              -3.806e-01  4.173e-02   -9.121  < 2e-16 *** 

logLABOR_UA              -1.487e-01  4.359e-02   -3.412 0.000645 *** 

logLABOR_US              -1.277e-01  4.562e-02   -2.800 0.005120 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.2743 on 36392 degrees of freedom 

Multiple R-squared:  0.8206, Adjusted R-squared:  0.8204  

F-statistic:  5944 on 28 and 36392 DF,  p-value: < 2.2e-16 

 The model gives low p values for almost all independent variables, has a decent fit, and adjusted R 

square 0.8204 is high enough to verify the linear relationship between logAIRFARE and all explanatory 

variables. Also, fare has linear relationship with 1-quarter lag of fuel. The coefficient of logFUEL(t-1) is 

0.2337 that means fare may increase 0.2337% when fuel price increases by 1%. But this is only for WN 

airline. When this result combined with the airline interaction variables, depending on airline, increase 1% 



in fuel price results in, somewhere between 0.1229% increase in fare for AA, 0.1657% increase in fare 

for DL, 0.2306% increase in fare for UA and 10.6% increase in fare for US, and 0.2337% increase in 

fare for WN. 

 The coefficient of logLABOR is 0.4650 that means fare may increase 0.465% when LABOR increases 

by 1%. But this is only for WN airline. When this result combined with the airline interaction variables, 

depending on airline, increase 1% in LABOR results in, somewhere between 0.0844% increase in fare 

for DL, 0.1426% increase in fare for AA, 0.3163% increase in fare for UA and 0.3373% increase in fare 

for US, and 0.465% increase in fare for WN. 

 All else being equal the fares show an extremely slow increase compare to GDP changes. The coefficient 

of GDP_CHANGE is 0.005956 which means the fare will increase 0.005956% when GDP change goes 

up 1%. It’s even lower than inflation increase. 

 Compared to the fourth quarter, the fare of the second quarter is highest, followed by the first quarter, but 

fare for the third quarter is lower than the fourth quarter.  

 The coefficient of AA, DL, UA and US are all positive compared to WN which implies the fare of WN 

carrier is the lowest, followed by UA, US, DL and AA. However, the fare of WN is also most sensitive 

to fuel price among all five carriers, then followed by UA, US, DL and AA via coefficients of interaction 

variables, which represents the same order. 

 All else being equal the yield generally drops with the distances, but the rate of decrease itself decreases 

with distance. This is consistent with our understanding of airfare yields. 

 All else being equal, as the passenger flow increasing, the fares first rise and then fall slightly. Also, the 

variables are statistically significant at the 1% level. 

 Time zone differences are significant at 1%. It implies that the fare is highest for time zone differences of 

2 and 1 when compared with those of 0, 3 and above. 

 As the coefficient of FREQUENCY is 4.405*10-4, fare will increase by 3.86 cents per mile when adding 

1 flight per day. 

 As the coefficient of FREQ_OTHERS is 2.255*10-7, fare will increase by 0.002 cents per mile when 

adding 1 flight per day. That means other airline’s flight schedule is not sensitive to the airfare. 

 As the coefficient of SEATS is -1.450*10-6, fare will decrease by 0.13 cents per mile when adding 10 

seats per day.  

 

4.3 Hybrid Model of Airline Competitions for Multi-Stage Game 

Depending on the number of main carrier in the same market, the multi-stage games have different stages. 

After summarizing the domestic market via real-world data, three sorts of scenarios will be taken into 

consideration. There are lots of different airlines as carriers at different airports, but only a few of airlines are 



the dominant carries, while 60% of endpoints has one main carrier, 32% of endpoints has two main carriers, 

and 7% of endpoints has three carriers via data from DOT. Usually, the ranking first airline as one player in 

the markets has monopoly situation, and the airfare is decided by it, then the second, the third, etc. Thus, three 

sorts of scenarios are discussed and focus on the influence of frequency and seats on airfare.  

(1) One Main Carrier Market 

    As for the one main carrier market, the airline has monopoly for pricing in that market. So, only one 

airfare regression equation is used to determine the airfare of the market. There are 14,847 observations in the 

dataset, the results are: 

Coefficients: 

                            Estimate Std. Error  t value Pr(>|t|)     

(Intercept)                2.414e+00  4.575e-02   52.778  < 2e-16 *** 

logFUEL(t-1)              2.502e-01  2.048e-02   12.213  < 2e-16 *** 

logLABOR                 3.409e-01  4.988e-02    6.834 8.58e-12 *** 

PASSENGERS_SUM        -3.280e-05  9.987e-07  -32.843  < 2e-16 *** 

GDP_CHANGE             4.546e-03  8.475e-04    5.365 8.23e-08 *** 

QUARTER1to4             2.813e-02  5.858e-03    4.802 1.59e-06 *** 

QUARTER2to4             4.018e-02  5.745e-03    6.993 2.81e-12 *** 

QUARTER3to4             1.174e-02  5.754e-03    2.041 0.041289 *   

AAtoWN                   2.038e+00  1.876e-01   10.860  < 2e-16 *** 

DLtoWN                     1.757e+00  6.832e-02   25.714  < 2e-16 *** 

UAtoWN                     8.377e-01  9.988e-02    8.388  < 2e-16 *** 

UStoWN                     1.130e+00  1.278e-01    8.840  < 2e-16 *** 

TIMEZONE_absdiff_1to0      3.848e-02  5.452e-03    7.059 1.75e-12 *** 

TIMEZONE_absdiff_2to0      1.496e-01  1.323e-02   11.302  < 2e-16 *** 

TIMEZONE_absdiff_3to0     -8.871e-02  1.338e-02   -6.629 3.49e-11 *** 

DIST1                     -3.029e-03  2.121e-05 -142.817  < 2e-16 *** 

DIST2                     -9.326e-04  1.575e-05  -59.203  < 2e-16 *** 

DIST3                     -1.501e-04  3.839e-05   -3.910 9.27e-05 *** 

FREQUENCY                1.454e-04  1.849e-05    7.863 4.02e-15 *** 

FREQ_OTHERS             -2.825e-05  4.643e-06   -6.085 1.19e-09 *** 

SEATS                     -4.065e-07  1.087e-07   -3.740 0.000184 *** 

logFUEL(t-1)_AA           -1.732e-01  2.274e-02   -7.616 2.77e-14 *** 

logFUEL(t-1)_DL           -1.098e-01  2.093e-02   -5.244 1.59e-07 *** 

logFUEL(t-1)_UA           -5.935e-02  2.188e-02   -2.713 0.006684 **  

logFUEL(t-1)_US           -1.072e-01  2.333e-02   -4.597 4.33e-06 *** 

logLABOR_AA              -3.335e-01  8.101e-02   -4.117 3.86e-05 *** 

logLABOR_DL              -2.960e-01  5.243e-02   -5.646 1.67e-08 *** 

logLABOR_UA              -4.639e-02  5.797e-02   -0.800 0.423622     

logLABOR_US              -8.121e-03  5.672e-02   -0.143 0.886155     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.2489 on 14818 degrees of freedom 

Multiple R-squared:  0.8747, Adjusted R-squared:  0.8745  

F-statistic:  3696 on 28 and 14818 DF,  p-value: < 2.2e-16 

According to the results,  

 As the coefficient of FREQUENCY is 1.454*10-4, fare will increase by 1.832 cents per mile when 

adding 1 flight per day. 

 As the coefficient of FREQ_OTHERS is -2.825*10-5, fare will decrease by 0.25 cents per mile when 

adding 1 flight per day.  

 As the coefficient of SEATS is -4.065*10-7, fare will decrease by 0.037 cents per mile when adding 10 

seats per day. 

(2) Two Main Carrier Market 

    There are 7,880 observations in the dataset, the results are: 

Stage 1: 



Coefficients:  

                            Estimate Std. Error t value Pr(>|t|)     

(Intercept)                1.417e+00  7.254e-02  19.528  < 2e-16 *** 

logFUEL(t-1)_R1          1.221e-01  3.830e-02   3.189 0.001435 **  

logLABOR_R1             8.744e-01  9.211e-02   9.494  < 2e-16 *** 

PASSENGERS_SUM        -3.380e-05  9.980e-07 -33.870  < 2e-16 *** 

GDP_CHANGE                4.943e-03  1.151e-03   4.295 1.77e-05 *** 

QUARTER1to4               -1.471e-04  8.201e-03  -0.018 0.985689     

QUARTER2to4                3.214e-02  7.962e-03   4.036 5.48e-05 *** 

QUARTER3to4               -8.497e-04  7.950e-03  -0.107 0.914893     

TIMEZONE_absdiff_1to0      3.929e-02  6.890e-03   5.703 1.22e-08 *** 

TIMEZONE_absdiff_2to0     -2.516e-02  1.208e-02  -2.083 0.037313 *   

TIMEZONE_absdiff_3to0     -1.264e-01  2.291e-02  -5.518 3.54e-08 *** 

DIST1                     -2.835e-03  3.637e-05 -77.938  < 2e-16 *** 

DIST2                     -7.567e-04  1.854e-05 -40.815  < 2e-16 *** 

DIST3                      4.950e-05  3.364e-05   1.471 0.141242     

FREQUENCY_R1             6.231e-04  2.437e-05  25.573  < 2e-16 *** 

SEATS_R1                  -2.100e-06  1.628e-07 -12.903  < 2e-16 *** 

AAtoWN_R1                  1.664e+00  1.583e-01  10.511  < 2e-16 *** 

DLtoWN_R1                  2.220e+00  9.915e-02  22.386  < 2e-16 *** 

UAtoWN_R1                  1.352e+00  1.175e-01  11.509  < 2e-16 *** 

UStoWN_R1                  9.611e-01  2.657e-01   3.617 0.000300 *** 

logFUEL(t-1)_AA_R1       9.483e-04  3.922e-02   0.024 0.980709     

logFUEL(t-1)_DL_R1       4.635e-02  3.878e-02   1.195 0.232033     

logFUEL(t-1)_UA_R1       9.448e-02  3.907e-02   2.418 0.015630 *   

logFUEL(t-1)_US_R1       1.723e-01  4.574e-02   3.768 0.000166 *** 

logLABOR_AA_R1           -4.892e-01  1.068e-01  -4.580 4.73e-06 *** 

logLABOR_DL_R1           -7.970e-01  9.465e-02  -8.420  < 2e-16 *** 

logLABOR_UA_R1           -5.354e-01  9.749e-02  -5.492 4.11e-08 *** 

logLABOR_US_R1           -5.482e-01  1.081e-01  -5.073 4.00e-07 *** 

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.2503 on 7852 degrees of freedom 

Multiple R-squared:  0.7896, Adjusted R-squared:  0.7889  

F-statistic:  1091 on 27 and 7852 DF,  p-value: < 2.2e-16 

For rank first airline: 

 As the coefficient of FREQUENCY is 6.231*10-4, fare will increase by 5.77 cents per mile when adding 

1 flight per day. 

 As the coefficient of SEATS is -2.1*10-6, fare will decrease by 0.19 cents per mile when adding 10 seats 

per day. 

 

Stage 2: 

Coefficients:  

                            Estimate Std. Error t value Pr(>|t|)     

(Intercept)                4.314e-01  3.300e-02  13.075  < 2e-16 *** 

logAIRFAIR(t)_R1          8.356e-01  5.016e-03 166.580  < 2e-16 *** 

logFUEL(t-1)_R2         -1.198e-02  1.517e-02  -0.790  0.42964     

logLABOR_R2             9.279e-02  3.623e-02   2.561  0.01045 *   

PASSENGERS_SUM        -3.110e-06  6.402e-07  -4.859 1.21e-06 *** 

GDP_CHANGE               1.135e-03  5.317e-04   2.134  0.03289 *   

QUARTER1to4               -6.501e-03  3.786e-03  -1.717  0.08605 .   

QUARTER2to4               -8.935e-03  3.685e-03  -2.425  0.01534 *   

QUARTER3to4               -2.874e-03  3.679e-03  -0.781  0.43476     

TIMEZONE_absdiff_1to0      -8.376e-03  3.411e-03  -2.456  0.01408 *   

TIMEZONE_absdiff_2to0       6.603e-03  5.727e-03   1.153  0.24889     

TIMEZONE_absdiff_3to0      -2.024e-02  1.057e-02  -1.915  0.05550 .   

DIST1                        -4.853e-04  2.028e-05 -23.925  < 2e-16 *** 

DIST2                        -1.377e-04  9.010e-06 -15.278  < 2e-16 *** 

DIST3                        -2.099e-05  1.605e-05  -1.308  0.19098     

FREQUENCY_R2               2.212e-04  2.313e-05   9.563  < 2e-16 *** 

FREQ_OTHERS_R2            -3.249e-05  3.871e-06  -8.395  < 2e-16 *** 

SEATS_R2                    -1.023e-06  1.779e-07  -5.753 9.12e-09 *** 

AAtoWN_R2                  1.133e-01  6.462e-02   1.753  0.07965 .   

DLtoWN_R2                  -5.709e-02  5.399e-02  -1.057  0.29042     

UAtoWN_R2                  -3.007e-01  5.383e-02  -5.586 2.40e-08 *** 

UStoWN_R2                  1.252e-01  9.990e-02   1.253  0.21029     

logFUEL(t-1)_AA_R2          1.521e-02  1.559e-02   0.975  0.32943     

logFUEL(t-1)_DL_R2          8.260e-02  1.569e-02   5.264 1.45e-07 *** 

logFUEL(t-1)_UA_R2          1.179e-01  1.565e-02   7.535 5.44e-14 *** 

logFUEL(t-1)_US_R2          7.385e-02  1.757e-02   4.203 2.66e-05 *** 

logLABOR_AA_R2           -3.208e-02  4.195e-02  -0.765  0.44437     



logLABOR_DL_R2           -7.202e-02  3.928e-02  -1.833  0.06679 .   

logLABOR_UA_R2           -1.138e-02  3.917e-02  -0.291  0.77132     

logLABOR_US_R2           -1.261e-01  4.201e-02  -3.002  0.00269 **  

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.1157 on 7850 degrees of freedom 

Multiple R-squared:  0.9578, Adjusted R-squared:  0.9576  

F-statistic:  6139 on 29 and 7850 DF,  p-value: < 2.2e-16 

For rank second airline: 

 As the coefficient of FREQUENCY is 2.212*10-4, fare will increase by 1.9 cents per mile when adding 1 

flight per day. 

 As the coefficient of FREQ_OTHERS is -3.249*10-5, fare will decrease by 0.29 cents per mile when 

adding 1 flight per day.  

 As the coefficient of SEATS is -1.023*10-6, fare will decrease by 0.09 cents per mile when adding 10 

seats per day. 

 

(3) Three Main Carrier Market 

    There are 1,790 observations in the dataset, the results are: 

Stage 1: 

Coefficients:  

                            Estimate Std. Error t value Pr(>|t|)     

(Intercept)                2.181e+00  1.537e-01  14.191  < 2e-16 *** 

logFUEL(t-1)_R1          1.568e-01  7.324e-02   2.141 0.032440 *   

logLABOR_R1               5.011e-01  1.752e-01   2.860 0.004283 **  

PASSENGERS_SUM        -2.781e-06  1.443e-06  -1.927 0.054162 .   

GDP_CHANGE                 7.706e-03  2.114e-03   3.645 0.000275 *** 

QUARTER1to4                2.670e-02  1.503e-02   1.776 0.075847 .   

QUARTER2to4                2.888e-02  1.500e-02   1.925 0.054399 .   

QUARTER3to4                1.382e-02  1.493e-02   0.926 0.354752     

TIMEZONE_absdiff_1to0      2.082e-01  1.850e-02  11.251  < 2e-16 *** 

TIMEZONE_absdiff_2to0      3.013e-01  4.836e-02   6.230 5.81e-10 *** 

TIMEZONE_absdiff_3to0      7.293e-01  1.182e-01   6.171 8.38e-10 *** 

DIST1                     -2.819e-03  1.232e-04 -22.882  < 2e-16 *** 

DIST2                     -1.144e-03  5.671e-05 -20.165  < 2e-16 *** 

DIST3                     -3.870e-04  1.040e-04  -3.720 0.000205 *** 

FREQUENCY_R1             1.049e-04  3.838e-05   2.733 0.006336 **  

SEATS_R1                  -1.122e-06  3.390e-07  -3.308 0.000957 *** 

AAtoWN_R1                  2.161e+00  3.243e-01   6.665 3.54e-11 *** 

DLtoWN_R1                  2.043e+00  2.236e-01   9.138  < 2e-16 *** 

UAtoWN_R1                  1.086e+00  2.229e-01   4.869 1.22e-06 *** 

UStoWN_R1                  1.285e+00  5.551e-01   2.315 0.020711 *   

logFUEL(t-1)_AA_R1      -7.977e-02  7.551e-02  -1.056 0.290887     

logFUEL(t-1)_DL_R1      -7.406e-02  7.404e-02  -1.000 0.317342     

logFUEL(t-1)_UA_R1      -5.573e-02  7.434e-02  -0.750 0.453563     

logFUEL(t-1)_US_R1       5.982e-03  8.652e-02   0.069 0.944886     

logLABOR_AA_R1           -4.686e-01  2.048e-01  -2.288 0.022263 *   

logLABOR_DL_R1           -5.268e-01  1.851e-01  -2.847 0.004470 **  

logLABOR_UA_R1           -1.678e-01  1.832e-01  -0.916 0.360024     

logLABOR_US_R1           -3.116e-01  2.221e-01  -1.403 0.160790     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.2228 on 1762 degrees of freedom 

Multiple R-squared:  0.8167, Adjusted R-squared:  0.8138  

F-statistic: 290.7 on 27 and 1762 DF,  p-value: < 2.2e-16 

For rank first airline: 

 As the coefficient of FREQUENCY is 1.049*10-4, fare will increase by 0.95 cents per mile when adding 

1 flight per day. 

 As the coefficient of SEATS is -1.122*10-6, fare will decrease by 0.1 cents per mile when adding 10 



seats per day. 
 

Stage 2: 

Coefficients:  

                            Estimate Std. Error t value Pr(>|t|)     

(Intercept)                2.086e-01  2.307e-01   0.904 0.365893     

logAIRFAIR(t)_R1            7.581e-01  1.387e-02  54.671  < 2e-16 *** 

logFUEL(t-1)_R2            1.243e-01  5.369e-02   2.316 0.020682 *   

logLABOR_R2               8.507e-02  1.151e-01   0.739 0.459819     

PASSENGERS_SUM          -4.582e-06  1.078e-06  -4.251 2.24e-05 *** 

GDP_CHANGE                 1.074e-03  1.321e-03   0.813 0.416068     

QUARTER 1to4               -7.920e-03  9.247e-03  -0.856 0.391845     

QUARTER 2to4                1.444e-02  9.233e-03   1.564 0.118055     

QUARTER 3to4                7.787e-03  9.222e-03   0.844 0.398573     

TIMEZONE_absdiff_1to0     -6.803e-02  1.205e-02  -5.647 1.90e-08 *** 

TIMEZONE_absdiff_2to0     -1.215e-01  3.144e-02  -3.866 0.000114 *** 

TIMEZONE_absdiff_3to0     -7.857e-01  7.166e-02 -10.964  < 2e-16 *** 

DIST1                      -8.967e-04  7.717e-05 -11.620  < 2e-16 *** 

DIST2                      -9.541e-05  3.712e-05  -2.570 0.010252 *   

DIST3                       7.718e-04  6.617e-05  11.664  < 2e-16 *** 

FREQUENCY_R2              4.852e-04  4.082e-05  11.886  < 2e-16 *** 

FREQ_OTHERS_R2            -2.747e-05  6.543e-06  -4.198 2.82e-05 *** 

SEATS_R2                  -2.903e-06  3.398e-07  -8.543  < 2e-16 *** 

AAtoWN_R2                  1.276e+00  2.759e-01   4.625 4.02e-06 *** 

DLtoWN_R2                  2.468e-01  2.506e-01   0.985 0.324942     

UAtoWN_R2                  1.874e-01  2.560e-01   0.732 0.464270     

UStoWN_R2                  3.861e-01  3.600e-01   1.073 0.283589     

logFUEL(t-1)_AA_R2      -7.882e-02  5.484e-02  -1.437 0.150790     

logFUEL(t-1)_DL_R2      -4.526e-02  5.466e-02  -0.828 0.407780     

logFUEL(t-1)_UA_R2       7.700e-04  5.468e-02   0.014 0.988766     

logFUEL(t-1)_US_R2       5.741e-02  5.928e-02   0.968 0.332942     

logLABOR_AA_R2           -2.947e-01  1.274e-01  -2.312 0.020870 *   

logLABOR_DL_R2           -1.365e-02  1.197e-01  -0.114 0.909222     

logLABOR_UA_R2            5.302e-02  1.215e-01   0.436 0.662645     

logLABOR_US_R2           -1.947e-01  1.329e-01  -1.465 0.143022     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.1372 on 1760 degrees of freedom 

Multiple R-squared:  0.9413, Adjusted R-squared:  0.9403  

F-statistic: 972.6 on 29 and 1760 DF,  p-value: < 2.2e-16 

For rank second airline: 

 As the coefficient of FREQUENCY is 4.852*10-4, fare will increase by 4.46 cents per mile when adding 

1 flight per day. 

 As the coefficient of FREQ_OTHERS is -2.747*10-5, fare will decrease by 0.25 cents per mile when 

adding 1 flight per day.  

 As the coefficient of SEATS is -2.903*10-6, fare will decrease by 0.26 cents per mile when adding 10 

seats per day. 
 

Stage 3: 

Coefficients:  

                            Estimate Std. Error t value Pr(>|t|)     

(Intercept)                1.155e+00  6.652e-01   1.736  0.08272 .   

logAIRFAIR(t)_R1            4.263e-01  2.251e-02  18.934  < 2e-16 *** 

logAIRFAIR(t)_R2            2.700e-01  2.053e-02  13.151  < 2e-16 *** 

logFUEL(t-1)_R3            6.017e-02  1.169e-01   0.515  0.60679     

logLABOR_R3               6.576e-03  3.581e-01   0.018  0.98535     

PASSENGERS_SUM          -1.366e-06  1.106e-06  -1.236  0.21671     

GDP_CHANGE                 2.906e-03  1.386e-03   2.096  0.03620 *   

QUARTER1to4                6.203e-03  9.905e-03   0.626  0.53124     

QUARTER2to4                4.257e-04  9.857e-03   0.043  0.96556     

QUARTER3to4                4.259e-03  9.840e-03   0.433  0.66524     

TIMEZONE_absdiff_1to0      9.019e-02  1.343e-02   6.716 2.51e-11 *** 

TIMEZONE_absdiff_2to0     -6.029e-02  3.430e-02  -1.758  0.07900 .   

TIMEZONE_absdiff_3to0     -1.447e-01  7.805e-02  -1.854  0.06391 .   

DIST1                     -1.369e-03  8.293e-05 -16.513  < 2e-16 *** 

DIST2                     -2.013e-04  3.841e-05  -5.241 1.79e-07 *** 



DIST3                      2.313e-04  7.376e-05   3.135  0.00174 **  

FREQUENCY_R3             8.857e-04  6.660e-05  13.297  < 2e-16 *** 

FREQ_OTHERS_R3           1.544e-05  6.931e-06   2.228  0.02599 *   

SEATS_R3                  -5.193e-06  5.143e-07 -10.099  < 2e-16 *** 

AAtoWN_R3                  2.702e-01  6.751e-01   0.400  0.68902     

DLtoWN_R3                 -5.148e-01  6.700e-01  -0.768  0.44236     

UAtoWN_R3                  4.781e-01  6.743e-01   0.709  0.47841     

UStoWN_R3                 -2.744e-01  7.107e-01  -0.386  0.69947     

logFUEL(t-1)_AA_R3      -1.701e-02  1.176e-01  -0.145  0.88500     

logFUEL(t-1)_DL_R3       5.507e-02  1.176e-01   0.468  0.63970     

logFUEL(t-1)_UA_R3       3.968e-02  1.174e-01   0.338  0.73544     

logFUEL(t-1)_US_R3       2.884e-02  1.204e-01   0.240  0.81067     

logLABOR_AA_R3           -1.057e-01  3.612e-01  -0.293  0.76983     

logLABOR_DL_R3            4.334e-02  3.595e-01   0.121  0.90407     

logLABOR_UA_R3           -2.249e-01  3.606e-01  -0.624  0.53294     

logLABOR_US_R3            3.266e-02  3.619e-01   0.090  0.92811     

--- 

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Residual standard error: 0.1463 on 1759 degrees of freedom 

Multiple R-squared:  0.9326, Adjusted R-squared:  0.9315  

F-statistic: 811.8 on 30 and 1759 DF,  p-value: < 2.2e-16 

For rank third airline: 

 As the coefficient of FREQUENCY is 8.857*10-4, fare will increase by 8.3 cents per mile when adding 1 

flight per day. 

 As the coefficient of FREQ_OTHERS is -1.544*10-5, fare will decrease by 0.14 cents per mile when 

adding 1 flight per day.  

 As the coefficient of SEATS is -5.193*10-6, fare will decrease by 0.47 cents per mile when adding 10 

seats per day. 

4.4 Discussing about the Airfare and Capacity Allocation 

      Using table 1, here lists the results above. 

Table1.  airfare and capacity allocation 

 

 Airfare increase when 

adding 1flight per day 

(cents/passenger.mile) 

Airfare decrease when other 

airline adding 1flight per 

day (cents/passenger.mile) 

Airfare decrease when 

adding 10 seats per 

day(cents/passenger.mile) 

The aggregate market 3.86 -0.002 0.13 

M
u

lt
i-

st
ag

e 
m

ar
k

et
 

One main airline 1.832 0.25 0.04 

Two main airline 
5.77  0.19 

1.90 0.29 0.09 

Three main airline 

0.95  0.10 

4.46 0.25 0.26 

8.30 0.14 0.47 

 

As for the airline in market, table 1 implies: 

 adding flight leads to its airfare increasing, but other airline adding flight leads to its airfare decreasing; 

 adding flight has better effects than adding seats 



 airline with high market share gets more advantage than lower one. 

5 Case Study for One-Stop Domestic Market 

 

6 Conclusion 
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