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Abstract 

Airlines and high speed rail are increasingly competing for passengers, especially in Europe 

and Asia. Competition between them affects the number of captured passengers and, 

therefore, revenues. We consider multi-modal competition between airlines (legacy and 

low-cost) and high speed rail. We develop a new approach that generates airline 

schedules using an integrated mixed integer, non-linear optimization model that captures 

the impacts of airlines’ decisions on passenger demand. We estimate the demand 

associated with a given schedule using a nested logit model. We report our computational 

results on realistic problem instances of the Spanish airline IBERIA, and show that the 

actual airline schedules are found to be reasonably close to the schedules generated by 

our approach. 

Next, we use this optimization modeling approach under multi-modal competition to 

evaluate multiple scenarios involving entry of high speed rail into new markets. We 

account for the possibility of demand stimulation as a result of the new services. We 

validate our approach using data from markets that had an entry by high speed rail in the 

past. The out-of-sample validation results show a close match between the predicted and 

observed solutions. Finally, we use our validated model to predict the impacts of future 

entry by high speed rail in new markets. Our results provide several interesting and useful 

insights into the schedule changes, fleet composition changes, and fare changes that will 

help the airline cope effectively with the entry of high speed rail. 

Keywords: airline scheduling, high speed rail, competition, integration, nested logit, 

demand stimulation. 

1. Introduction 
During the last few decades in Europe, High Speed Rail (HSR) has become an important 

competitor to airlines, presenting railway transport in a new form and notably improving 

the quality of service offered (Behrens and Pels, 2012; and Roman et al., 2007). An 

airline’s ability to cope with HSR entry depends on a number of factors. Airline profitability 
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is critically influenced by the airline’s ability to: 1) estimate passenger demands; 2) 

construct profitable flight schedules (referred to as the airline schedule planning process); 

and 3) determine the fare levels for a set of products in an origin-destination market 

(referred to as the pricing process) and determine how many seats to make available at 

each fare level (referred to as revenue management). Because an investment in HSR often 

generates a redistribution of passengers between air and rail alternatives, varying the 

existing modal distribution, the impact of this investment on scheduled air transportation 

is quite uncertain and of great interest. This paper focuses on an integrated approach for 

airline passenger demand estimation and flight schedules construction when air and HSR 

modes compete. 

1.1 Demand estimation 

Transportation demand models are used to develop forecasts of passenger demand for 

each origin-destination (OD) pair (or market) as a function of attributes such as average 

fares, service frequencies, market demographics and economic conditions (Garrow, 2012). 

Given these total demand estimates, passenger choice models are used to estimate for 

each airline competitor and each market, the proportion of demand (or the share of 

market) it captures in that market, considering market-specific characteristics, including 

passengers’ mode preferences and airline preferences, fares, flight frequencies and other 

market attributes. 

There is widespread acceptance in the airline industry of an S-curve relationship between 

airline market share and frequency share. The S-curve describes how an airline’s market 

share grows non-linearly with its frequency share in that market. Early theoretical 

development and empirical evidence that higher-frequency shares are associated with 

disproportionately higher market shares was provided in the 1970s before deregulation 

(Simpson, 1970). After deregulation, there exist a number of references to the S-curve in 

the aviation literature (Wei and Hansen, 2005; Belobaba, 2009; Vaze, 2011; and Vaze and 

Barnhart, 2012a). The most commonly used mathematical expression for the S-curve 

relationship is given by: 
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where A  is the set of airlines, w

aP  is the probability that a passenger in market w  

selects airline a A  among all the airlines, w

af  is the frequency value of airline a A  

in market w  and 1   is the frequency parameter. 

1.2 Schedule planning 
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The schedule planning process typically starts from an existing schedule with a 

well-developed route structure and fleet composition. In constructing each new schedule, 

changes are introduced to the existing schedule to reflect changes in demands and the 

market environment. Due to the enormous size and complexity of the problem, schedule 

planning is a multi-step process, usually separated into four, sequentially solved 

subproblems: schedule design, fleet assignment, maintenance routing, and crew 

scheduling (Barnhart and Cohn, 2004; and Barnhart, 2009). 

Schedule Design. Given available resources, the objective of schedule design is to develop 

a profit-maximizing schedule, defining an origin, a destination, a departure time, and an 

arrival time for each flight leg. It is a critical stage of an airline’s planning process, as a 

major proportion of costs and revenues are fixed once a flight schedule is determined. 

Schedule design is typically composed of two sequential steps: frequency planning and 

timetable development (Lohatepanont and Barnhart, 2004). 

Frequency Planning is the problem of determining the number of flight departures over a 

specified time period (e.g., over a week) for each route. This is a critical factor in an 

airlines’ ability to compete for passengers, whose flight selection is primarily influenced by 

the frequency of flights, timetable, fares and quality of service. Increasing flight 

frequencies reduces wait time between flights, improves the convenience of air travel for 

passengers and increases the airline’s market share relative to that of its competitors 

(Belobaba, 2009). This last effect results in an airline’s market share being dependant not 

only on its own service but also on the services provided by other airlines in the market. 

Timetable Development involves constructing a flight schedule that matches the 

frequencies determined in solving the frequency planning problem. Numerous factors 

must be considered in generating a timetable, including the trade-off between 

maximization of aircraft utilization (block hours per day) and schedule convenience for the 

passengers; minimum ‘turnaround’ times at each airport to deplane and enplane 

passengers, refuel and clean aircraft; and convenient passenger connections at hub 

airports (Belobaba, 2009). 

Fleet Assignment. The fleet assignment problem is to determine the type of aircraft to be 

flown on each flight, given a planned flight network and specified timetable. The solution 

has a tremendous impact on an airline’s profits, as it directly affects flight operating costs 

and passenger revenues. Important factors in assigning fleet types to flights include 

passenger demand, aircraft seating capacities, aircraft operating costs, and fleet size and 

composition (Hane et al., 1995). 

Aircraft Routing. Given the assignment of fleet types to flights, the airline next determines 
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the sequence of flights to be flown by each aircraft. The solution must ensure that each 

flight is flown exactly once, each aircraft visits maintenance stations at regular intervals, 

and only available aircraft of each type are utilized in the solution (Desaulniers et al., 

1997). 

Crew Scheduling. The goal of crew scheduling is to identify cost-minimizing crew 

schedules that provide the necessary crews for each flight, while satisfying the myriad of 

constraints imposed by government and labor work rules. A survey of optimization 

approaches for crew scheduling is provided in Barnhart et al. (2003). 

For tractability purposes, schedule planning models typically consider demand for an 

airline’s flights to be deterministic and invariant to schedule changes and competition. 

These assumptions, however, have been shown to lead to overestimates of the number of 

passengers served, the revenue captured, and schedule profitability (Yan et al., 2007; and 

Belobaba, 2009). An effective schedule planning process for an airline, then, depends 

critically on both the accurate estimation of the overall demand for travel in each market; 

and the accurate understanding of how passengers will choose between the airline’s and 

its competitors’ travel options in that market. 

1.3 Schedule planning and demand estimation 

Several researchers have developed enhanced schedule planning models to more 

accurately capture passenger demand for an airline’s schedule and the resulting revenues 

(for example, Barnhart et al., 2002; Jacobs et al., 2008; Dumas et al., 2009; Barnhart et al., 

2009; and Cadarso and Marín, 2013). These enhanced models, however, do not account 

for changes in passenger demand resulting from competition. Studies that have 

considered the impact of competition on travel demand include, for example, Hansen 

(1990), Hong and Harker (1992), Yan et al. (2007), Wei and Hansen (2007), Pita et al. 

(2012), and Vaze and Barnhart (2012a). These studies, however, do not consider 

multi-modal competition and do not differentiate between different types of airlines, i.e., 

Legacy Airlines (LAs) and Low-Cost Airlines (LCAs). LAs and LCAs provide different service 

levels, and hence, the resulting demand patterns are different. Previous econometric 

studies have investigated multi-modal competition using logit models to estimate the 

demand associated with a schedule (for example, Behrens and Pels, 2012; and Roman et 

al., 2007). However, there is limited research involving the integration of these types of 

multi-modal logit models with schedule design models. Zito el al. (2011) model how 

airlines make decisions on fares and frequencies of service in a multi-modal competitive 

environment, but competition between different types of airlines (such as that between 

legacy airlines and low-cost airlines) is not considered, schedule development is not 

modeled at the level of detail of schedule design models, and they do not apply their 
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approach to real-world instances. Wang et al. (2012) present a new framework that 

incorporates the spill and recapture effects. The concept is derived from the classical 

multinomial logit model. Their preliminary computational study shows an increase in 

profitability and a better utilization of the network capacity, on a medium-size North 

American airline.  

Our work differs from others in that it considers multi-modal competition including airline 

(legacy and low-cost) and high speed rail, and develops a new approach that: 1) estimates 

the demand associated with a given schedule using a nested logit model; and 2) generates 

airline schedules and fleet assignments using an integrated schedule design and fleet 

assignment optimization model that accounts for airline competition for passenger 

demand, and captures the impacts of schedule decisions on passenger demand, as 

suggested by the S-curve relationship. Our model, reflecting that passenger demand for an 

airline schedule depends not only on the airline’s schedule but also on the schedule of its 

competitors, captures linkages between schedule competition and passenger demand. It 

is therefore able to drive profit maximization with improved estimates of revenues. Pricing 

and revenue management decisions, however, are out of the scope of our model, that is, 

the model uses average ticket fares as inputs. 

The motivation for considering multi-modal competition stems from the fact that High 

Speed Rail (HSR) and airlines are increasingly competing for passengers in many parts of 

Europe and Asia, especially in short- to medium-haul markets. HSR often competes by 

providing similar or even greater service frequency and better connectivity to the city 

centers. Moreover, HSR is often perceived as the safer and more comfortable mode 

(Jehanno et al., 2011). In addition to modeling competition between air and rail modes, 

we model competition between legacy and low-cost airlines. These are perceived as 

different choices because level of service is different. Usually, legacy airlines include the 

following services: first class and/or business class, a frequent-flyer program, airport 

lounges, alliance partners that agree to provide these services to the passengers as well, 

etc. These services are often not associated with low-cost airlines. 

1.4 Contributions 

In this paper, we present a mixed integer, non-linear programming model for the schedule 

design and fleet assignment problem that includes a passenger choice model to capture 

multi-modal competition between high speed rail, low-cost airlines, and legacy airlines. 

Our major contributions include: 

1. Development of a tactical competition model for an airline — considering 

multi-modal competition between air and high speed rail, and airline competition 
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between legacy and low-cost carriers — using a nested logit model of demand 

behavior. We calibrate our model using real data.  

2. Development of an integrated mixed integer, non-linear programming model for 

schedule optimization that includes frequency planning, approximate timetable 

development, fleet assignment and passenger demand choice. We solve this 

model using realistic problem instances obtained from the network of the Spanish 

airline IBERIA. Our instances also include other air and rail transportation options 

in Spain. We also perform sensitivity analysis on model parameters. Our 

experimental results show that the schedules generated by our approach are 

found to closely resemble the current decisions made by IBERIA with a reasonable 

level of accuracy. This indicates that the current decision-making by IBERIA does 

take into account the multi-modal competition aspects.  

3. We evaluate multiple scenarios involving entry of HSR into new markets, and we 

account for the possibility of demand stimulation as a result of the new services. 

We validate our approach using data from markets that had an entry by high speed 

rail in the past. The out-of-sample validation results show a close match between 

the predicted and observed solutions. Finally, we use our validated model to 

predict the impacts of future entry by high speed rail in new markets. Our results 

provide several interesting and useful insights into the schedule changes, fleet 

composition changes, and fare changes that will help the airline cope effectively 

with the entry of high speed rail. 

1.5 Key definitions 

The remainder of the paper uses some important terms which are defined as follows. 

 Tactical planning: resource assignment decision-making over a time horizon of 

several months prior to day of operations. 

 Origin-Destination (OD) pair: combination of origin airport and destination airport. 

 Route: a physical path through the nodes of the air network (defined by fixed 

geographic coordinates) linking an origin and a destination. We assume that an 

airline offers a unique route, which may be one-stop or non-stop, for every OD 

pair. This assumption holds true for our case study network. 

 Market: combination of origin airport, destination airport and a desired departure 

time period. 

 Flight leg: combination of a departure airport, a departure time period, an arrival 

airport and an arrival time period (i.e., a non-stop flight). 

 Itinerary: sequence of one or more flight legs traversed by a passenger from the 

passenger’s origin to the passenger’s destination. Note that multiple itineraries 

may serve the same OD pair (within the same route). We assume that itineraries 
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are composed of at most two flight legs. This holds for all the itineraries in our case 

study. In contrast to a route which is a path in the spatial network of an airline, an 

itinerary is a path in the time-space network of an airline. 

1.6 Outline of the paper 

The remainder of this paper is organized as follows. In Sections 2 and 3, respectively, we 

present our demand modeling approach and our formulation for schedule optimization 

under multi-modal competition. In Section 4, computational experiments for a real-world 

problem using data provided by a legacy airline in Spain (IBERIA) are described, and the 

results are presented. In Section 5, we evaluate multiple scenarios involving entry of HSR 

into new markets. We conclude in Section 6 with a discussion of major findings. 

2. Demand modeling 
Service frequency is one of the most important attributes on which the airlines compete. 

An airline can attract more passengers in a market by increasing the service frequency. For 

a given unconstrained total demand, the market share of each airline depends, among 

other factors, on its own frequency and on the frequency of its competitors.  

However, modeling the market share as simply a function of the frequency share is not 

enough to model passenger demand behavior in many markets. This is especially true in 

markets where the competitor fares are different from each other and the competing 

airlines are different from the perspectives of the passengers in other ways (Vaze and 

Barnhart, 2012a). There are other attributes, such as fares and travel times that can 

significantly affect passengers’ airline choice (Behrens and Pels, 2012; and Roman et al. 

2007). For instance, consider an Origin-Destination (OD) pair served by two different 

airlines: the first one operates a non-stop flight and the second one a one-stop flight. 

Passengers will likely prefer the non-stop flight over the one-stop flight, all else being 

equal, because non-stop flights typically have less travel time and are more convenient 

compared with one-stop flights. 

2.1 Nested logit model development 

Consequently, we extend the model in (1) in order to include fare and travel time as 

attributes. Many past studies have modeled market share as a function of the logarithms 

of the attributes such as frequency, price and travel time (Wei and Hansen, 2005; and 

Vaze and Barnhart, 2012a). The relationship in (1) may be extended and rewritten as a 

discrete choice multinomial logit model (see equation 2), where the choice probability is 

proportional to the exponential of the systematic utility ( ( | )v a w ) of each airline a  in 

market w . 
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where w

ap  is the fare of airline a A  in market w , w

att  is the planned travel time of 

airline a A  in market w  (for non-stop itineraries it is the flight time and for one-stop 

itineraries it is the sum of the two flight times and the average value of passenger 

connecting time),   is the fare parameter and   is the flight time parameter. In 

addition, there could be other airline-specific factors that impact the passenger share. For 

example, some passengers might have a preference for legacy carriers over low-cost 

carriers, or some passengers might prefer one airline over the other due to frequent flyer 

program memberships, etc. In order to capture these factors, we include alternative 

specific constants aasc for each airline a A . 

In general, all passengers prefer lower fare and higher frequency. However, some 

passengers might value lower fare more than other passengers do, while others might 

give more importance to higher frequency. To incorporate these effects, we propose an 

extension of (2). Let   be the set of passenger types and    represent a particular 

passenger type, e.g., business or leisure. Let 
wH   be the probability for an individual in 

market w  of belonging to passenger type  , which is usually modeled with a logit 

expression as well, where the exponent is denoted by ( | )w   (Greene and Hensher, 

2003; and Wen and Lai, 2010). Let |w

aP   be the probability that a passenger of type   in 

market w  selects airline a A  among all the airlines. Now the systematic utility of 

each airline a  in market w  for passenger type   is also conditioned on   and is 

denoted by ( | , )v a w  . Consequently, the joint probability for a passenger in market w  

of belonging to type   and selecting airline a A  ( ,w

aP  ) among all the airlines will be 

as follows: 
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. (3) 

Due to lack of disaggregate data on passenger attributes (such as individual 

socioeconomic and trip characteristics) in our case studies, we assume that the exponent 

in the logit expression for the probability for a passenger of belonging to type   in 

market w  is ( | ) b b l l d s s

w w w ww d
                 , where   is the alternative 

specific constant for each passenger type  , b

w  is a 0/1 dummy variable indicating 
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whether market w  is business-dominated ( b


  is the corresponding coefficient), l

w  is 

a 0/1 dummy variable indicating whether market w  is tourism-dominated ( l


  is the 

corresponding coefficient), 
wd  is the average distance travelled (which depends on the 

route) in market w  ( d


  is the distance coefficient) and s

w  is a 0/1 dummy variable 

indicating whether market w  is served by a one-stop route (as against a non-stop route) 

( s


 is the corresponding coefficient).  

,( | , ) = log log log logw w w

a a a av a w asc f p tt           is the systematic component of 

the utility of an itinerary on airline a  in market w  for passenger type  , where   

is the frequency parameter, ,w

ap   is the fare of airline a A  in market w  for 

passenger type  , 
  is the price parameter, 

  is the flight time parameter and 

aasc  is the alternative specific constant for each airline for each passenger type  . 

Therefore, the choice probability for airline a  consists of summation (across different 

passenger types) of the products of two terms: the choice probability for the passenger 

type   ( |w

aP  ) and the probability for a passenger in market w  of belonging to 

passenger type   (
wH  ).  

Sometimes, HSR is considered the best transport mode for short distance trips, providing 

shorter travel times between cities, higher quality of service and reduced access times to 

city centers. We, therefore, introduce a modal choice model. Passengers decide between 

High Speed Rail (HSR) and air modes for the origin-destination pairs (OD pairs) where both 

are competing. We assume that each operator offers a unique route for each OD pair (this 

holds for 94.23% of the ODs in our case study). We also assume that there are no 

connecting flights in the OD pairs where the HSR operates (this holds for all the ODs 

where the HSR operates in our case study). Consequently, all airlines that serve the OD 

pairs where the HSR operates have the same flight time and the attribute w

att  is 

redundant and hence, it is not included in those specific cases within the systematic utility 

of the airline. However, the HSR and air modes are differentiated by modal travel times, 
w

railtt  and w

airtt  (these times also include access and egress times), respectively. The 

passenger choice of a specific alternative in each OD pair can be modeled using the nested 

logit model. We have two levels in the nested logit model: mode (air vs. rail) level at top 

and operator level at bottom. At the top level, the passenger chooses from different 

alternative modes, including air and rail. Note that we have a unique rail operator. 

Therefore, if the passenger chooses rail mode then there is no more choice necessary. On 

the other hand, if the passenger chooses air mode, then the decision in the lower level of 
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the nested logit model involves choice between the various competing airlines (equation 

3). We model passengers’ modal choice for each market and passenger type in equation 4: 

 |
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where  0,1air   is a measure of correlation and substitution among alternatives in the 

nest. The lower the correlation between unobserved effects in the utilities of different air 

operators, the higher is the air
 value. air  is the air travel time parameter. 

( | ) log log log logw w w

rail rail rail rail rail rail railv rail w asc f p tt       is the systematic utility of 

the alternative rail  for each market w . railasc
 is the rail alternative specific constant. 

w

railf is the rail service frequency and rail  is the frequency parameter for the rail mode. 

w

railp  is the rail mode’s fare and rail  is the fare parameter for the rail mode. Finally, rail  

is the rail travel time parameter. ( | ) log nullv null w asc  is the systematic utility of the 

null alternative, which we define as the decision to travel by neither air nor rail in a market 

w . Such decision can include traveling by any other mode of transportation or not 

traveling at all. We treat the null alternative as a single alternative with no observable 

attributes except for an alternative specific constant due to lack of data. Note that, in 

general, the distance in each market could be considered to be an attribute. However, 

since the data for the case study considered in this paper does not exhibit significant 

variance in distance, we decided to omit this variable. The probability for a passenger in 

market w  of belonging to type   and selecting airline a  is: , | |

|=w w w

a w a air airP H P P    , 

where |

|

w

a airP   is the same as the expression for |w

aP   in (3). 

Note that at the mode choice level we are not differentiating between different passenger 

types. So the passenger type   appears only in the log-sum term in (4). This is consistent 

with our previously stated aim of investigating the differences in the relative preferences 

of the different passenger types for airfare and airline frequency. This modeling choice is 

made in order to strike the right balance between additional modeling complexity and the 

ability to get interesting insights using the available data. Note that one can extend the 

presented methodology in a number of ways, namely, inclusion of passenger types at the 

mode choice level, an increase in the number of passenger types at the airline choice 

level, etc. 

2.2 Parameter estimation 

We have estimated the nested logit model parameters using real data from year 2010 
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provided by IBERIA. This data was obtained by IBERIA from Amadeus Market Information 

Data Tapes (MIDT). This MIDT data includes data collected from a multitude of travel 

providers such as airlines, car rental companies, railway companies, ferry lines, cruise 

lines, and travel agencies. The data is composed of 104 different origin-destination pairs 

and 7 different periods of time where each period is a week. Consequently, there are 728 

different sets of data, one corresponding to each week. Each set is composed of the data 

of the airline under study (IBERIA) and its competitors. The total number of rows in our 

dataset equals 30547, one corresponding to each market. Data includes market type 

(namely, business- or leisure-dominated), average distance travelled in the market, 

market service type (namely, one-stop vs. non-stop), overall demand, market share, 

frequency, travel time, and price (the last four by operator). The demand data from MIDT 

is constrained demand data in the sense that it includes sales that actually happened, 

rather than reflecting the total demand. So the sales that didn’t happen don’t get 

included. As a result, the total unconstrained demand is likely to exceed the total sales. 

We use a pragmatic approach for unconstraining demands. Our approach is backed by 

prior literature and is designed to make the best use of the limited availability of 

unconstrained demand data. We have available data on bookings and load factors for 

IBERIA flights. Therefore, we can use the approach in Wickham (1995), which is still widely 

used in practice (Guo et al., 2012), to find unconstrained demand data. 

This approach consists of identifying departures in each market that are not constrained 

(i.e., those flights with load factor lower than 0.7). For these departures, the percentage of 

the bookings held at a given day prior to departure relative to the bookings held at 

departure day is computed. Then, for the constrained departures, the number of bookings 

held prior to departure is divided by this percentage to get an estimate of the total 

unconstrained demand for those departures. Due to data limitations, we have the 

information on the number of bookings held at a given day prior to departure only for a 

subset of all the markets within IBERIA network. Therefore, we use the following 

pragmatic approach that extends the approach proposed by Wickham (1995): 

1. We first compute the percentage of the bookings held one week prior to departure 

relative to the bookings held at departure day for the departures that are not 

constrained and are in the subset for which we have the data on the prior number 

of bookings (these constitute 8.31% of the departures in the dataset). 

2. Then, we compute the average of the percentages computed in step 1 and apply it 

to the constrained departures for which we have the data on the number of 

bookings one week prior to departure (these constitute 15.03% of the departures 

in the dataset), in order to obtain the unconstrained demand values for those 

departures. This is consistent with the approach proposed by Wickham (1995). 
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3. Next, we compute the ratio between the unconstrained and constrained demand 

values for the available constrained departures in step 2 and obtain its average 

value.  

4. This average ratio is then applied to the rest of the constrained departures within 

IBERIA network to get the respective unconstrained demands (these constitute 

45.81% of the departures in the dataset). 

5. Because we do not have data on bookings held one week prior to departure for 

the rest of the airlines and the HSR, the average of the ratios computed from 

IBERIA network is used for this purpose. The HSR also uses revenue management 

techniques and the average load factor usually lies between 0.7 and 0.85 

(Ferropedia, 2014). Therefore, we assume the demand unconstraining techniques 

in the airline industry are also valid for the HSR. 

Note that this extended approach was developed with the aim of reusing a proven 

demand unconstraining method from past literature while making the best use of the 

limited data available at our disposal. 

In this case study, there are two main types of competing airlines: low-cost and legacy 

airlines. There are three low-cost airlines (Vueling, Ryanair and easyJet) and three legacy 

airlines (IBERIA, Air Europa and Spanair). The rail competition is provided by a unique rail 

operator (RENFE) and it is not present in all the OD pairs. The HSR is present in the 

following OD pairs: Madrid-Barcelona, Barcelona-Madrid, Madrid-Seville, Seville-Madrid, 

Madrid-Malaga and Malaga-Madrid. Table 1 presents a data summary (the average and 

range) of overall unconstrained demand (total number of passengers interested in making 

a trip in each market); constrained market share (percentage of reservations made for 

each mode and/or airline); frequency (number of operated services by each operator per 

time period); travel time (service time in hours between each OD pair); price (average fare 

paid by each passenger in each OD pair). Note that each row in Table 1 presents the 

summary of one column in our dataset. 

Table 1: Nested logit parameter estimation data summary 

Type of Data Average Data range 

Overall unconstrained demand 132.7 [1.0, 1086.1] 

Market share 32.5% [0.01%, 100%] 

Frequency (per week) 27.6 [6, 144] 

Travel time (hours) 2.42 [1.25, 5.76] 
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Price (Euro) 95.4 [32.6, 315.7] 

The parameters to be estimated are:  , 
 , 

 , aasc , air , railasc , air , rail , 

rail , rail , 
nullasc , 

 , b


 , l


 , d


  and s


 . We assume two passenger types, indexed 

by    with   equal to 1  representing business passengers and   equal to 2 

representing leisure passengers. As mentioned earlier, one can easily extend the 

presented methodology to include more passenger types. The alternative specific 

constant, 
aasc , models the passenger perception of legacy and low-cost airlines. Thus, it 

takes value 1  if the airline is a legacy airline (without loss of generality) and if the airline 

is a low-cost airline then the alternative specific constant is a parameter to be estimated 

(see estimates in Table 2). Also, for identification, the parameters ( , , , ,
T

b l d s

        ) 

in the passenger type model’s exponent are normalized to zero for one passenger type (

1  ). 

We have used the maximum likelihood estimation method in order to estimate the nested 

logit model parameters. The log-likelihood for all the observations is: 

              | |

1 , | , ,

1

log   | ,..., = log | | | log | log |
n

w w w w w w w

n i a w i a air i air i i rail rail i i null null i

i Z

L x x H x P x P x P x P x  



        
 

 
  

 
 

, 

where , , ,, ,w w w

i a i rail i null    are indicator parameters (i.e., it is 1 if observation i  is related to 

airline a , rail mode or the null alternative, respectively, for market w ), 

 , , , , , , , , , , , , , , ,
T

b l d s

a air rail air rail rail rail nullasc asc asc
   

   

              are the 

parameters to be estimated, and  ,, , , , , , , , , ,
T

w w w w w w w b l s

i a a a air rail rail rail w w w w i
x f p tt tt f p tt d    is 

the data vector for the i th observation. The method of maximum likelihood estimation 

provides estimates of   by finding a value of   that maximizes  1log   | ,..., nL x x : 

  1
ˆ arg max log   | ,..., nL x x



 


 , where   is the set of values of   over which the 

likelihood maximization is conducted. 

The Newton-Raphson method is used to maximize the log-likelihood function with respect 

to the parameter vector  . Almost all of the parameter estimates were found to be 

significant at the 95% confidence level using the classic Student’s t-test. Table 2 shows the 

test results: the parameters are listed in the first column, the estimates in the second 

column, standard errors in the third column and the p-values in the last column. Because 

the problem is likely a non-convex optimization problem, there is a danger of the 
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algorithm getting stuck in local maxima. Therefore, initial values could affect the results of 

likelihood maximization. In order to overcome this potential issue, we tried multiple initial 

values for the Newton-Raphson method, and picked the overall best solution obtained 

from these multiple tries. We found that the overall optimal solution results in intuitively 

reasonable relative values ( 1 2  , 1 2  , and 1 2  ) of parameter estimates 

without enforcing such constraints explicitly. This was not found to be the case for some 

of the local maxima obtained in the process.  

We use the likelihood ratio test statistic, following a Chi-squared distribution, with 

degrees of freedom equal to the number of extra estimated parameters, to test overall 

model significance. This test statistic equals 1831.21. Using the critical value of 25.00 at 

5% significance level (for 15 extra parameter), we reject the null hypothesis that the naïve 

model (i.e., a model that contains no explanatory variables; it only contains the five 

alternative specific constants: 1

aasc , 2

aasc , 2 , railasc  and nullasc ) is as good as the 

nested logit model. We also checked that the frequency, fare and travel time parameters 

are significantly different across passenger types. We performed the classical t-test of the 

difference between 1  and 2 , 1  and 2 , and 1  and 2 . The p-values are 0.029, 

0.047 and 0.053, respectively indicating that, for each of the three parameters, with 

approximately 95% or higher confidence we can reject the null hypothesis that the 

parameter value is equal across the two passenger types. 

Table 2: Nested logit parameter estimation results 

Parameter Estimate Standard Error p-Value 
1  1.5897 0.071 0.032 

1  -0.5639 0.003 0.026 

1  -1.5801 0.204 0.019 

1

aasc  0.8239 0.281 0.027 

2  1.1601 0.107 0.031 

2  -0.8672 0.044 0.023 

2  -1.3195 0.156 0.014 

2

aasc  1.1385 0.358 0.044 

2  0.6106 0.109 0.052 

2

b  -0.2587 0.081 0.043 

2

l  0.8512 0.066 0.048 

2

d  0.0108 0.175 0.046 



15 
 

2

s  0.0783 0.108 0.033 

air  0.7230 0.092 0.012 

air  -0.8028 0.131 0.030 

rail  0.9541 0.122 0.016 

rail  -0.4125 0.286 0.022 

rail  -0.8963 0.301 0.037 

railasc  1.3574 0.127 0.021 

nullasc  0.3953 0.027 0.053 

 

The estimated inclusive value (i.e., ( | , )log v aw

a A

e 


 ) parameter of the air nest ( air ) is 

statistically significantly less than 1 (at 5% significance level). The corresponding likelihood 

ratio-test statistic equals 36.27, much greater than the critical value of 3.84 at 5% 

significance level (for one extra parameter). We thus reject the null hypothesis that the 

model with =1air  is as good as our latent class nested logit model. =1air  would 

mean that there is no correlation within the air nest and that the latent class nested logit 

model is equivalent to a latent class multinomial logit model. The interpretation of this 

result is that, for the presented case study, air alternatives have some correlation in the 

unobserved effects, but they are competing to some degree. 

From the alternative specific constant for the rail mode, we can conclude that, all else 

being equal, passengers prefer the rail mode rather than the air mode when competing in 

the same origin-destination pair ( >1railasc ). This is mainly due to unobserved effects 

such as the fact that railway security checks are less onerous for the passengers, and rail 

passenger travel is more comfortable and convenient (allowing the use of electronic 

devices throughout the journey, etc.). 

From the estimation results we conclude that passengers’ value of time is similar for 

different transport modes ( rail , air ). At first look, the parameter estimates might seem 

to suggest that passengers value railway frequency less than airline frequency ( <1rail
 

and 1 , 
2  > 1). However, if we correct the scale of the parameters inside the nest to 

match the scale outside the nest, then the  (0.9541)rail  value is between 1

air   

(1.1493) and 2

air   (0.8387), suggesting that passengers value railway frequency and 
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airline frequency in roughly the same way. Note that rail  parameter is used for a 

mixture of business and leisure travelers. The same holds for HSR passengers’ sensitivity 

to prices, i.e., the rail  value (-0.4125) is between the corrected 1

air  (-0.4076) and 

2

air  (-0.6269) values.  

The results show that, all else being equal, business passengers prefer legacy airlines over 

low-cost airlines ( 1 <1aasc ), while leisure passengers prefer low-cost airlines ( 2 >1aasc ). 

This suggests that in addition to the attributes that we explicitly captured in our model 

(that is, fare, frequency and travel time) there are other attributes, such as differences in 

airline images, loyalty programs etc., that make low-cost airlines relatively more attractive 

to leisure passengers and legacy airlines relatively more attractive to business passengers. 

Passengers belonging to the business category are more sensitive to travel time than 

passengers belonging to the leisure category ( 1 2<  ), while business passengers are less 

sensitive to higher fares than leisure passengers ( 1 2>  ). Both these observations make 

intuitive sense. In addition, business passengers place more value than leisure passengers 

on higher frequencies ( 1 2>  ), presumably because higher frequency reduces effective 

travel time, which includes schedule displacement (Belobaba, 2009). Schedule 

displacement corresponds to time elapsed between when a passenger wants to travel and 

when service is offered. Thus, effective travel time and schedule displacement both 

change inversely with frequency.  

Parameters in the passenger type model’s exponent, i.e.  , , , ,
T

b l d s

        , are 

normalized to zero for business passengers ( 1  ). For passengers belonging to the 

leisure category, the estimated values make intuitive sense. The business-dominated 

market coefficient for leisure passengers is lower than zero (
2

0b  ), which means that, all 

else being equal, business-dominated markets have more business passengers than 

leisure passengers. The contrary holds for the tourism-dominated markets coefficient (

2 0l  ). Finally the distance coefficient and the one-stop route coefficient are both 

slightly, but statistically significantly, greater than zero (
2

0d  , 
2

0s  ) implying that, all 

else being equal, there are slightly more leisure passengers than business passengers in 

markets with greater flight distances and in markets served by one-stop routes. 

The captured demand w

a  for airline a  in market w  is given by (5), where wd  is the 

unconstrained total demand for market w . Since we are studying a tactical problem for 

which the timetable is approximate, the OD attributes are substituted in the nested logit 
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model for the frequency parameter, i.e., w

af  is substituted by od

af , od  being the OD 

pair of market w  (
od

od w

a a

w W

f f


  , where 
odW  is the set of markets in OD pair od ). 

 

 
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( '| , )( '| , )
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( '| )

( | ) ( | )
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ee
e e

 
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
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 
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


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






  









 (5) 

3. Optimization model formulation 
Vaze and Barnhart (2012b) present a three-stage modeling framework for the airline 

planning process. The first stage deals with network design where decisions about the 

number and location of hubs, candidates for non-stop routes and allowable airports for 

passengers’ connections are made. The second stage involves the frequency planning and 

fleet assignment problem, and the third stage addresses the timetable development and 

fleet balancing problem. The model presented in this paper combines the decisions in the 

second and third stages of this framework since the network design decisions in the first 

stage are beyond the scope of this paper. The integrated model addresses frequency 

planning, fleet assignment, and development of an approximate timetable (i.e., number of 

departures for each OD pair and for each time period). Since we are proposing a tactical 

competition model, we assume that fares are fixed at an average value and will not be 

part of the decision variables. We formulate the model as an optimization problem from 

an airline’s point of view. 

Air Network. The air network is formed by the airports and all the feasible flight legs 

linking them. The airports are characterized by the number of operations that can be 

performed at those airports. We assume that arrival and departure slot availability is 

known for each airport for each airline, and airlines offer the links (flight opportunities) 

between the airports.  

In order to ensure tractability of the problem, we propose an aggregated network, similar 

to that presented in Harsha (2008). It allows different levels of time-discretization at each 

airport, depending on the level of airport congestion. An airport-time period is defined as 

a combination of an airport and a specific time period at that airport. More congested 

airports are modeled with a finer-level of time discretization (e.g., six time periods per 

day) to ensure that the number of flight operations does not exceed capacity during any 
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(short) period of time. Uncongested airports are modeled with a lower level of fidelity 

(e.g., two time periods per day) because capacity constraints are typically not binding. 

Such an aggregation scheme reduces problem size compared to that using a single 

discretization level, without significantly compromising the modeling accuracy (Harsha, 

2008).  

A flight leg is a combination of departure airport-time period and arrival airport-time 

period. There are different fleet types for IBERIA, each characterized by its seating 

capacity. However, because of demand uncertainty and because of the effects of revenue 

management, the airlines are rarely able to sell all the seats on an aircraft. Therefore, we 

will assume a maximum allowable load factor for every flight leg (Vaze and Barnhart, 

2012a). Our optimization formulation allows for practical constraints that ensure that 

certain aspects of an existing flight schedule are included in the new schedule. For 

example, an airline sometimes receives government grants to maintain a minimum level 

of service in some markets; an airline sometimes needs to schedule a pre-determined 

minimum number of flights in some OD pairs in order to maintain its competitive position 

in those markets, consistent with its corporate strategy; and an airline can lose some of its 

take-off and landing slots at an airport if some OD pairs are not operated. We assume that 

there are no flights being operated when the planning period (i.e., the time period for 

which operations are to be scheduled) starts because we study a domestic network where 

the planning period starts at night when none of the flights is flying.  

Finally, we assume that the flight schedule will be periodic, that is, the schedule will 

repeat after the planning period ends. To satisfy this, the number of aircraft of each fleet 

type at each airport at the beginning and the end of the planning period must be the 

same. 

Passenger Demand. As explained in Subsection 2.2, unconstrained demand is estimated 

for the combination of origin airport, destination airport and desired departure time 

period. This combination is defined as a market. Consequently, for each market the origin 

airport-time period is known. This combination of OD pair and time period is referred to 

as market-time period (note that airport-time period and market-time period are not the 

same because airport-time periods depend on the level of congestion and market-time 

periods don’t). The terms market and market-time period will be used interchangeably in 

the rest of this paper. In each market, passengers can choose any of the corresponding 

non-stop or one-stop itineraries (or pick a competitor or the null alternative). Thus the 

proposed model is itinerary-based. The demand captured by a certain airline will depend 

on competition effects which are incorporated in our model through the nested logit 

model introduced in Section 2. 
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Not all the passengers are able to travel on their desired itinerary. Some passengers are 

spilled due to lack of available seating capacity and a fraction of those can be recaptured 

on either other itineraries by the same airline or on other alternatives including itineraries 

by other airlines, rail alternative or null alternative. We model recapture for a given 

market w  and passenger type   using two different parameters: the split ratio ( ,w

w




) 

and the recapture rate (
w

 ). We assume that once passengers are spilled, they are spilled 

to other available market-time periods (similar to Pita et al., 2012). The split ratio 

determines the split of passengers from the spilling time period to the time periods before 

and after it. It depends on the unconstrained demand of each passenger type (i.e., 
w wH d

) in the market-time periods immediately before ( w ) and immediately after ( w ) the 

spilling time period ( w ): 
,w w

w

w w

w

w w

H

H H

d

d d





 


 

 



 




. In other words, passengers spilled 

from market-time period w  may be recaptured in market-time periods w  and w . 

The split ratios satisfy , , 1w w

w w

  
 

  . Note that since these market-time periods 

immediately before and after the spilling market-time period, in turn, can also spill 

passengers, this modeling mechanism allows passengers from any market-time period to 

be recaptured in any other market-time period to a certain extent. Then, we model the 

recapture rate (
w

 ) of an airline for a given market as a function of travel time and 

current market share of the spilling airline 0a  (
0

,w

aP  ) (Pita et al., 2012): 

0

, 1
max 0; 1w

w a w

a

P
tt

 
   

   
   

. As shown in this expression, long-haul markets are less 

sensitive to departure/arrival times than short-haul markets, leading to higher recapture 

by the other itineraries on the spilling airline. Also, if an airline has a larger market share, 

it should be able to recapture a larger fraction of spilled demand. Therefore, the fraction 

of passengers of type   spilled from market-time period w  whom the airline succeeds 

in redirecting to its own itineraries in market-time period w  is given by ,w

ww

  


 . Thus, 

the airline schedule optimization problem depends on recapture rates, which in turn 

depend on airline market shares. Finally, the market shares themselves are dependent on 

the airline’s optimized schedules. We solve this problem iteratively, as described in 

Section 4. 

As mentioned above, we are integrating several sub-problems namely, frequency 

planning, approximate timetable development and fleet assignment, while explicitly 

accounting for passenger demand variation with schedule. Then, the aim of our Integrated 

Airline Scheduling under COmpetition Model (IASCOM) is to obtain, for all flight legs for 
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one single airline, the frequency by fleet type, given airport slots availabilities, fleet sizes, 

average fares, unconstrained demands and competitors’ schedules. 

The notation in the IASCOM is defined as follows: 

Sets 

 A : set of airline operators indexed by a . 

 G : set of airports indexed by g . 

 OD : set of origin-destination pairs indexed by od . 

 COD : subset of origin-destination pairs served by one-stop routes. 

 W : set of markets indexed by w . 

 F : set of flight legs indexed by f . 

 I : set of itineraries indexed by i . 

 wI : subset of itineraries serving market w . 

 fI : subset of itineraries using flight leg f . 

  : set of fleet types indexed by  . 

 Z : set of passenger types indexed by  . 

 K : set of nodes in our space-time network indexed by k ; each node is an 

airport-time period. 

 gK : subset of nodes belonging to airport g . 

 kPK : subset of nodes including node k  and all those that precede it in time at 

the same airport. 

 kAF : subset of flight legs arriving in node k . 

 kDF : subset of flight legs departing from node k . 

 1odF : subset of flight legs which serve OD pair od  as the first flight leg in the 

itinerary. Note that each OD pair is only served by a unique route in the airline 

network. 

 2odF : subset of flight legs which serve OD pair od  as the second flight leg in the 

itinerary. Note that each OD pair is only served by a unique route in the airline 

network. 

 
fRF : subset of flight legs that are subject to some regulation/other considerations 

such as government grants, competitive position, and slot rights. 

Parameters 

 wp
: average ticket price for passenger type   in market w . 
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 fc : operating cost for flight leg f  with fleet type  . 

 wd : total unconstrained demand in market w . 

 
falf : maximum allowable load factor for flight leg f . 

 q : seating capacity of fleet type  . 

 
a

kqa : the number of available arrival slots in node k  for airline a . 

 
a

kqd : the number of available departure slots in node k  for airline a . 

 
f : block time for flight leg f . 

 b : average block time across the planning period per aircraft of fleet type   

(i.e., actual average number of block hours for which each aircraft was operated in 

reality). 

 n : fleet size for fleet type  . 

 
fm : minimum frequency to be operated for flight leg f because of some 

regulation/other consideration. 

 gu : maximum number of planes of fleet type   on the ground at airport g  at 

the beginning of the planning period (there are some airports where the airline 

does not overnight planes; gu is 0 for those airports). 

 
wH  : probability for an individual in market w  of belonging to passenger type  . 

 ,w

airP  : probability for a passenger of type   in market w  of selecting nest air  

at the top level of the nested logit model. Note that ,w

airP   depends on od

af  which 

is a decision variable of the mathematical model. 

 ,

|

w

a airP  : probability for a passenger of type   from market w  of selecting 

alternative a  among all the air alternatives. Note that ,

|

w

a airP   depends on od

af  

which is a decision variable of the model. 

 w

 : the recapture rate in market-time period w  for passenger type  . 

 ,w

w




( ,w

w




): the split ratio from market-time period w  to w  ( w  to w ) for 

spilled passengers of type  . 

Variables 

 fz : frequency of flight leg f  with fleet type  .  

 gy : number of planes of fleet type   on the ground at the beginning of the 

planning period in airport g . 

 ih
: number of passengers of type   flown on itinerary i .  
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 wg : number of passengers of type   spilled from market w . 

 od

af : frequency operated by airline 𝑎 in OD pair od .  

The IASCOM for an operator (an airline) a  is as follows: 

 max =a w i f f

w W i I f F
w

p h c z   

     

    (6) 

subject to: 
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     ,wg w W    R  (22) 

     od

af od OD  R  (23) 

The objective function (6) maximizes the airline’s operating profit. Operating profit is the 
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difference between the fare revenue, given by the first term in the objective function, and 

the operating costs, given by the second term in the objective function. Constraints (7) 

ensure that the number of passengers of each type flown in each market does not exceed 

those allowed by the demand model minus those spilled in that market plus those 

recaptured from other market-time periods. The served demand is the number of 

passengers willing to travel in that market multiplied by the airline’s market share in that 

market, minus the spilled passengers, plus the passengers that are recaptured from the 

other market-time periods. Note that , ,

|

w w

a air air w wP P H d    depends on the decision variables 

od

af . Constraints (8) ensure that the number of passengers on a flight leg must be at most 

equal to the aircraft’s total capacity multiplied by the maximum allowable load factor. 

Constraints (9) and (10) are slot constraints for arrivals and departures, respectively. 

Constraints (11) and (12) ensure that the frequency in each OD pair cannot be greater 

than the total number of flight legs operated in that OD pair by all fleet types. Note that, 

as mentioned earlier, the airline under study has only one route serving each OD pair. So 

the constraints (11) ensure that the frequency in each OD pair does not exceed the total 

frequency of the first flight leg and constraints (12) ensure that it also does not exceed the 

total frequency of the second flight leg (wherever applicable). Constraints (12) are 

redundant for OD pairs served by non-stop itineraries. Constraints (13) state that the 

schedule must be symmetric, that is, the number of departures and arrivals in every 

airport must be the same within the planning period ensuring the number of planes in 

each location at the beginning and end of a cycle is the same. Similar to Harsha (2008) we 

ensure the fleet capacity constraint in an indirect way: constraints (14) are fleet utilization 

constraints which ensure that the utilization of each fleet type must not be greater than 

the available total block hours during the planning period. Constraints (15) count the 

number of planes of fleet type   on the ground in airport g  at every node 
gk K . 

Constraints (16) limit the number of planes to the fleet size. Constraints (17) limit the 

number of planes on the ground at each airport to the maximum as specified by airline’s 

requirements (i.e., there are airports where planes do not overnight, or only a 

pre-determined maximum number of them overnight, because there are neither crew 

bases nor maintenance opportunities). Constraints (18) capture regulations or some other 

restrictions on minimum frequencies on certain flight legs. Constraints (19)-(23) are 

variable value constraints. 

4. Case study and base case scenario 
We evaluate our model’s performance with case studies focusing on a single airline’s 

perspective. We use data provided by IBERIA, representing its operations for the year 

2010. The dataset consists of operating schedule information, operating expenses, 
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unconstrained demand values (as estimated using the procedure explained in Subsection 

2.2), frequencies from other operators, and the available fleet. Air and rail competition 

has been considered. There are two main types of competing airlines: low-cost and legacy 

airlines. There are three low-cost airlines and three legacy airlines in this case study. The 

air-rail competition is present in six origin-destination pairs: Madrid-Barcelona, 

Barcelona-Madrid, Madrid-Seville, Seville-Madrid, Madrid-Malaga and Malaga-Madrid. 

There is one unique rail operator. Due to lack of data, we assume in this case study that 

there is no response from the competitors to the airline’s schedule changes suggested by 

our model. However, each operator will likely respond to each competitor’s schedule 

change. Therefore, the airline under study will be a part of a multi-operator, 

non-cooperative game. Each player (operator) in this game will choose a strategy (i.e., a 

set of scheduling decisions) that maximizes its own pay-off function (profit). Such a pay-off 

maximizing strategy for each player will depend on other players’ chosen strategies. The 

airline under study will participate in this game by developing a pay-off maximizing 

strategy every time a competitor changes its schedule. In order to do so it will solve a 

problem modeled using IASCOM to obtain a new strategy each time. 

The air network is a pure hub-and-spoke network with 23 airports and 104 OD pairs. The 

only hub is located in Madrid. There is no flight leg bypassing the hub airport. We 

discretize time at different airports at different levels based on the levels of operations by 

the carrier and the congestion levels of the airports. There are some airports in the 

Spanish network which have very low utilization (i.e., two operations per day for IBERIA). 

For these airports a discretization of two time periods per day is employed (one time 

period for each half-day). However, for congested airports, such as airports in Madrid and 

Barcelona, a discretization of six time periods is implemented. There are 44 possible 

non-stop routes and 104 total routes within the network. There are three different fleet 

types available for IBERIA in this case study: an A-319 fleet with 141 seats per aircraft, an 

A-320 fleet with 171 seats per aircraft, and an A-321 fleet with 200 seats per aircraft. We 

have considered a planning period of seven days. We require the planning to be periodic, 

that is, the fleet distribution across the airports must be the same at the beginning and 

the end of the planning period. 

The IASCOM is a non-linear mixed integer programming model. The non-linearity is in 

constraints (7). The captured demand is a non-linear function of the airline’s frequency 

values (
od

af ). In order to solve the model, we linearize this expression using piecewise 

linear functions (note that for each market w  and passenger type   the term 

, ,

|

w w

a air air w wP P H d    depends on one frequency decision variable: 
od

af ). Consequently, we 

approximate the relationship between the fraction of passengers selecting the airline and 
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the frequency values by a piecewise linear function. The piece sizes are selected to be the 

same for every origin-destination pair, equal to one frequency value. In order to linearize 

the non-linear relationship we use special ordered set variables, which is an ordered set of 

non-negative variables, of which at most two can be non-zero, and if two are non-zero 

these must be consecutive in their ordering. Special ordered sets are typically used to 

approximately incorporate non-linear functions of a variable into a linear model. When 

embedded in a Branch-and-Bound code these variables enable truly global optima to be 

found, and not just local optima (Beale and Tomlin, 1970). We coded the IASCOM in 

GAMS, using CPLEX 12.1 as the optimization solver, on a computer with 8 GB RAM and 

solved all models to a maximum 1% optimality gap. The computational times across all the 

test cases never exceeded 1837 seconds. 

Now, we present our base case scenario and measure how closely our model solutions 

match reality, as described by IBERIA’s actual schedule.  

Base case scenario 

An airline’s revenue management practices indirectly lead to restrictions on the number 

of passengers to some fraction of the seating capacity. This fraction is a function of the 

airline’s revenue management system and the passenger demand patterns. If there were 

no revenue management system then we would have all flights filled up to the minimum 

of demand and available seats. Therefore, an important parameter in the IASCOM is the 

maximum allowable load factor on every flight leg, designated by 
falf . Although there 

are historical data available on load factors, it is not obvious how to make use of it to 

ascertain this maximum allowable load factor. Some recent studies have used arbitrary 

constant values, e.g. a value of 0.85 was used by Vaze and Barnhart (2012a). We 

acknowledge the fact that the demand patterns, and hence the response of the revenue 

management systems, is likely to be different for the different markets. Consequently, we 

employ two different values of the maximum allowable load factors. In order to set these 

two base values, we look for the ratio of average fare to operating cost per seat in each 

market so as to split them into two groups. Figure 1 shows this ratio for each market in 

the network (using total fare and total operating cost in case of one-stop markets). We 

calculate this average ratio for the flight legs (by taking ratio of weighted averages of all 

markets using that flight leg) and we classify them into the two groups: for flight legs with 

ratio less than 1.5, we set the average maximum allowable load factor (
falf ) equal to 0.85; 

otherwise it is set to 1. This assumption is consistent with our dataset, where among flight 

legs with the ratio (of average fare to operating cost per seat) less than 1.5, 85.1% had a 

load factor below 0.85, and 97.7% had a load factor below 0.9. Similarly, among flight legs 

with the ratio (of average fare to operating cost per seat) greater than 1.5, 94.3% had a 
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load factor between 0.85 and 1. Furthermore, our value of 0.85 is also consistent with the 

values used in prior literature (e.g., Vaze and Barnhart, 2012a). 

 
Figure 1: Ratio of average fare to operating cost per seat for each market 

We further validate this assumption by performing a sensitivity analysis of the model 

results to variations in this assumption. The aim of this sensitivity analysis is twofold: first, 

to validate our choice of the maximum allowable load factor values and second, to verify 

the robustness of the model formulation to some perturbations in this underlying 

assumption about parameter values. Seven different experiment runs are conducted. The 

maximum allowable load factor for each flight leg is assigned a value equal to 

( ,1)fmin alf  , where   takes one of the following values for each of the seven 

experiment runs: 0.85,0.90,0.95,1,1.05,1.10,1.15 . Note that the base scenario 

corresponds with  = 1. 

We compare the solutions provided by the IASCOM with the solution operated by IBERIA. 

Similar to Vaze and Barnhart (2012a), we use Mean Absolute Percentage Error (MAPE) to 

measure the discrepancies between model output and actual schedules, with 1MAPE  

(equation 24) measuring the difference in the total frequency value in each 

origin-destination pair over the planning period; 2MAPE  (equation 25) measuring the 

difference in the frequency value per fleet type per flight leg; 3MAPE  (equation 26) 

measuring the difference in the total number of flown seats per flight leg; and 4MAPE  

(equation 27) measuring the difference in frequency of flight legs per origin-destination 

pair and time period combination. Note that the subscript 𝑎 has been dropped to 
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simplify notation. 

1
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f f
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
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where ˆ ˆ,od ff z  are the solutions provided by the IASCOM optimization, ,od ff z  are 

based on the current schedules operated by the airline, and odK  is the subset of 

airport-time periods which belong to the origin airport of the OD pair od . 

Table 3: Comparison of model-predicted schedules with the actual IBERIA schedule 
  

1MAPE

(%) 
2MAPE

(%) 
3MAPE

(%) 
4MAPE

(%) 

AMS (%) PAX
(%) 

PROFIT
(%) 

RASK
(%) 

RPK
(%) 

FLEET (%) 

BCN SVQ AGP A-319 A-320 A-321 

0.85 12.05 25.71 15.06 29.13 0.00 -6.45 -2.31 -9.95 -16.83 -10.81 5.45 -2.53 -1.41 -17.02 

0.9 8.01 16.29 9.37 18.72 1.29 -4.51 -1.06 -5.03 -8.91 -6.19 4.52 -1.69 -0.63 -10.01 

0.95 5.31 8.92 6.82 12.03 1.71 -2.42 -0.49 -1.06 -3.11 -2.15 1.97 0.67 0.33 -3.41 

1 4.25 6.74 4.96 9.46 1.29 -1.26 -0.49 2.15 2.93 0.82 0.45 -0.09 -0.58 0.18 

1.05 4.63 9.08 5.87 13.29 1.71 -1.56 0.68 6.91 8.35 3.65 -0.72 -2.57 0.82 0.65 

1.1 7.41 12.91 8.18 18.99 1.29 -1.56 1.25 8.24 14.12 5.79 -2.03 -4.53 -0.71 1.21 

1.15 11.07 24.36 13.71 26.16 0.97 -2.42 1.51 11.71 18.34 6.41 -2.91 -7.65 -1.53 0.71 

Table 3 shows a summary of the results obtained for the base case scenario. The first 

column of the table lists   values. The values of the Mean Absolute Percentage Errors 

are in the second, third, fourth and fifth columns. Frequency values predicted by our 

model IASCOM (see 1MAPE ) are found to be close to the current schedule operated by 

IBERIA. The difference in fleet assignment (see 2MAPE ) is slightly higher than that in 

frequencies but is still small in an absolute sense, especially for the  =1 case. The 

variation in the number of seats flown (see 3MAPE ) is closely related to the variation in 
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frequencies. The variation in frequency of flight legs per origin-destination and time 

period (see 4MAPE ) is the highest as compared with the rest of MAPEs, reflecting that the 

approximate optimal timetable slightly differs from the current one operated by the 

airline when compared at a very disaggregate level. Even then, the difference is less than 

10% for the  =1 case. Similar to the mean absolute percentage error values, the 

individual differences between predicted and actual flight frequencies were also found to 

be small for the  =1 case. 

The sixth column (

 , ,ˆ

,

w w
air airP P

w W Z

w
Pair

w W Z

AMS

 









 

 

 


 

) in Table 3 shows the mean percentage 

difference in the air mode’s market share as provided by the IASCOM optimization ( ,ˆ w

airP  ) 

compared to the actual values as provided in the data obtained from IBERIA ( ,w

airP  ), for 

the markets in which HSR currently operates, namely, Madrid-Barcelona, Madrid-Seville 

and Madrid-Malaga. For the Madrid-Barcelona case (BCN), the predicted market share is 

never below the actual value. This is due to the fact that in this market there is a 

constraint (imposed by the airline to ensure their competitive position in that market) that 

requires a minimum level of service to be maintained and therefore, the frequency 

number is always above a minimum number (constraints imposing this minimum level are 

found to be binding only in the optimization model solution for = 0.85 ). In the 

Madrid-Seville market (SVQ), the air market share is comparatively more sensitive to the 

schedule predicted by the model, which in turn is dependent on  . This is due to the fact 

that in this market the only operating airline is IBERIA. The model predicts that the airline 

should offer somewhat lower frequencies due to the competition of HSR compared to 

those actually offered by the airline currently. Finally, in the Madrid-Malaga case (AGP), 

the model predicts that the market share grows with the   value. Note that the errors in 

market shares in Barcelona-Madrid, Seville-Madrid and Malaga-Madrid ODs are not 

presented here because the results are very similar as those for the corresponding 

opposite directional ones presented here. 

Other important metrics of interest include the mean percentage difference in the 

number of passengers transported (
 ĥ h

i i
i I Z

hi
i I Z

PAX

 









 

 

 


 

) and in IBERIA’s total profit (

ˆ
a a

a

PROFIT
 




) (Table 3: columns seven and eight, respectively). Both behave in a 

similar way except that the percentage difference in profits is more sensitive than that in 
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passengers, which is expected. Note that when the difference in the number of 

passengers transported is close to zero, the difference in profit is also close to zero. It is so 

because the predicted frequency and the predicted number of passengers transported in 

every market is very close to those in the IBERIA schedule.  

The quality of the schedule can also be analyzed by looking at the percentage difference 

(compared to the actual values obtained from IBERIA) in the average revenue per 

available seat kilometer ( RASK ), and the average revenue per passenger kilometer (

RPK ) (Table 3: columns nine and ten, respectively). RASK and RPK  are calculated as 

average values over the whole network and their mathematical expressions are the same 

as the one for PROFIT  (replacing 
a  with the average revenue per available seat 

kilometer and the average revenue per passenger kilometer, respectively). The RASK  

increases monotonically as   increases, that is, as we increase the maximum allowable 

load factor, the aircraft can accommodate more passengers and the revenue per seat 

kilometer increases. When the maximum allowable load factor is lower, the percentage 

difference with actual values is negative, which means that airplanes have more empty 

seats. The RPK  has the opposite behavior. When the number of captured passengers is 

low, the model solution preferentially serves the higher fare passengers, and when the 

maximum allowable load factor goes up, it also serves an increasing number of lower fare 

passengers. Note that we are using average fares for each market for each passenger 

type: business and leisure. So the impacts of changes in  on RASK  and RPK  are 

manifestations of two different effects: 1) a preference for accommodating more 

passengers on higher fare markets by providing additional flights or larger aircraft on such 

markets when not all the passenger demand on all markets can be accommodated due to 

limited fleet size (especially when   is low); and 2) a preference for accommodating 

more business passengers than leisure passengers when all the passengers demand for 

both types of passengers cannot be accommodated.  

Finally, the last column ( FLEET ) in Table 3 shows the percentage difference in fleet 

utilization with respect to IBERIA’s actual values (fleet utilization is measured as the 

average block hours flown per day). Its mathematical expression is the same as the one 

for PROFIT  (replacing 
a  with the fleet utilization for that fleet type). Fleet utilization 

depends on the schedule operated. In general, fleet utilization is lower when the 

maximum allowable capacity in flight legs is low (due to   being low). This can be 

attributed to the fact that when the maximum allowable number of seats to be sold on 

each flight leg goes down, it becomes less profitable to operate certain flight legs. As a 

result, in some cases, it becomes more profitable to keep the aircraft on the ground rather 

than to operate flight legs that are marginally profitable at higher values of maximum 
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allowable load factor. As a result, the number of scheduled flight legs is also lower at 

lower values of maximum allowable load factors. The scheduled frequencies increase as 

the value of   increases, thereby increasing fleet utilization. Nevertheless, when the 

value of   becomes too high, scheduled frequencies decrease. This is so because the 

offered capacity in each flight leg is now so large that passenger demand is satisfied with 

fewer flight legs, thus decreasing fleet utilization (except for the A-321 fleet, which has the 

highest capacity). At higher values of  , it becomes more economical to fly the largest 

planes. The cost per seat is lower at higher values of   because the planes are allowed 

to carry more passengers. 

For almost all the metrics compared in Table 3, the difference between the model 

predictions and IBERIA’s actual schedules is found to be the lowest (or close to the lowest) 

for a   value of 1. This provides credibility to our choice of the two base values (0.85 

and 1) of maximum allowable load factors. Additionally, for most of the comparison 

metrics in Table 3, the differences between model predictions and IBERIA’s actual 

schedules are found to be reasonably small for all but the extreme (i.e., 0.85 and 1.15) 

values of  . This shows that our model predictions are quite robust across multiple 

potential values of  . We will use  = 1 value, that is, we will use the two base values 

(0.85 and 1) of maximum allowable load factors, for all our subsequent computational 

experiments in this paper. 

As stated in Section 3, the recapture rate for a given market and passenger type is 

dependent on the airline’s market shares. However, if airline’s flight frequencies change, 

market shares will also change. In order to overcome this drawback, we solve the IASCOM 

model iteratively and update the airline’s market shares at each iteration (we take 

averages of the market share values corresponding to the previous two iterations in order 

to update them). Let 
, ( )w

aP    be the airline’s market share at iteration   in market w  

and for passenger type  . Again we use Mean Absolute Percentage Error (MAPE) to 

measure the discrepancies of the optimization model output between iterations   and 

1  : 

, ,

,

( ) ( 1)
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w w
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w W Z
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Figure 2: Trend in Mean Absolute Percentage Error in the airline’s market shares across 

iterations. 

Figure 2 shows the variation of aMAPE  across the iterative procedure. Note that the 

aMAPE  value drops rapidly to less than 3% within the first five iterations indicating that 

our model yields reasonably accurate results within a handful of iterations. After this 

threshold, aMAPE  continues decreasing but at a slower rate. All results presented in the 

earlier parts of this section correspond with the last (we conducted six iterations) iteration 

in the iterative procedure. 

5. Impacts of the entry of High Speed Rail 
In Spain, HSRs, mainly developed by the government, are a strong source of competition 

to airlines. They first operated in the origin-destination pairs Madrid-Seville and 

Seville-Madrid. Then, the government expanded HSR operations to the other OD pairs 

including Madrid-Malaga, Malaga-Madrid, Madrid-Barcelona, Barcelona-Madrid, 

Madrid-Valencia and Valencia-Madrid. In all these cases, the introduction of HSRs 

translated into a loss in market share for the airlines. Consequently, airlines had to change 

their operations to match the lower levels of demand by offering lower frequencies and 

smaller fleet sizes. In this section, we apply our IASCOM model, developed in Section 3, to 

understand the changes in the competitive landscape of airline markets upon entry of HSR 

by investigating the airline response to HSR entry. We use data provided by IBERIA, 

representing its operations for the years 2008 (in order to study past HSR entries) and 

2010 (in order to predict post-HSR entry scenario). 

We divide this section into three subsections. In Subsection 5.1, we develop a demand 
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stimulation model to model the changes in the unconstrained demand due to HSR entry. 

In Subsection 5.2, we validate our model’s ability to predict the airline response to HSR 

entry by using past data from a time period before an actual HSR entry into a market to 

predict the post-HSR entry scenario and compare it with the actual post-HSR entry 

scenario. In Subsection 5.3, we consider a scenario with HSR entry in six new 

origin-destination pairs, and we solve the IASCOM model in order to study the predicted 

responses. 

5.1 Demand stimulation modeling 

In the overview of IASCOM model, presented in (6)-(23), we assume that the 

unconstrained demand is fixed for each market. This assumption is reasonable in many 

markets where the entry of new operators is unlikely. However, if new operator entry 

occurs, the unconstrained demand will likely change due to demand stimulation. 

Consequently, we modify our model to account for this demand stimulation effect. 

The objective is to explain the variation in demand, by identifying the attributes that have 

the greatest and the most direct impact on total unconstrained demand. The major 

factors affecting the total travel demand in a market are the price of travel, total trip time 

and demographics related to the market itself (Belobaba, 2009). With the entry of HSR, 

the average price of the trip in the market and the total frequency value in the OD (
od od

a raila A
f f


 ) are likely to vary. No significant demographic changes are expected to 

occur because we are looking at a planning period of several months, rather than several 

years. Consequently, we model the variation in unconstrained demand with the total 

frequency (as a measure of schedule displacement, which is a part of the total trip time) 

and average fare in the market. In other words we model the elasticity of unconstrained 

demand to frequency and price. 

The concepts of price and time elasticity of demand for air travel can be incorporated into 

an unconstrained demand function. Consider the following multiplicative model of 

demand for travel in a given market (Grosche et al., 2007; and Belobaba, 2009): 

   odw w od

od

sd
d M p tt

f


  

    
 

, (29) 

where wM  is a market sizing parameter (constant),  
od

p  is the average price of travel, 

odtt  is the average trip time,   odf (= od od

a raila A
f f


 ) is the frequency value, and   and 



 

are price elasticity and time elasticity of demand, respectively. sd  is a constant 

expressed in hours. The schedule displacement component of total trip time may be 

expressed as odsd f . We assume that the desired departure times of passengers are 
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distributed uniformly. Therefore, the mean schedule displacement time for a typical 

passenger can be easily calculated, assuming the departure times are chosen to minimize 

mean schedule displacement times (Belobaba, 2009; and Vaze and Barnhart, 2012). Using 

this approach, the value of constant sd  equals 31.5 for our case studies. Values of   

and   can be estimated from a historical data sample of wd ,  odp ,  odtt  and   odf  

from similar markets over a period of time. Statistical estimation techniques like ordinary 

least squares regression applied to historical data (provided by the airline) provide us with 

the best fit curve (Belobaba, 2009). 

We developed this model extension to be applied to the case when HSR enters as a new 

operator in a market where the airline was already operating. Consequently, we used a 

sample of similar markets over a period of time in order to estimate the values of wM ,   

and  . These similar markets where IBERIA also faced the entry of the HSR are 

Madrid-Malaga/Malaga-Madrid, Madrid-Barcelona/Barcelona-Madrid, and 

Madrid-Seville/Seville-Madrid. The entry of the HSR in these markets occurred in years 

2007, 2008 and 1992, respectively. The total number of rows in our dataset equaled 4539, 

one corresponding to each combination of OD pair, day of week and time period. Other 

elements in the dataset include overall demand, price, travel time and frequency. Table 4 

presents a summary of the data used for parameter estimation (averages and ranges): 

overall unconstrained demand (number of requested trips in each market before and after 

the rail entry), price (average fare paid by each passenger in each OD pair before and after 

the rail entry), travel time (average service time between each OD pair before and after 

the rail entry), and frequency (total number of operated services in each OD before and 

after the rail entry). Taking logarithms of both sides of equation (29) (i.e., 

log log log log odw w od

od

sd
d M p tt

f
 

 
    

 

) and then regressing using the ordinary 

least squares estimation method, we obtained the numerical values for   and   of 

0.8759  and 1.0961 , respectively. Values of wM  for each OD pair-day of week-time 

period combination are also obtained from this estimation. For the markets where HSR is 

expected to enter in future, we substitute the estimated values ,   and market-specific 

values of , , odw od

od

sd
d p tt

f

 
 

 
 in (29) to calculate the wM  values for those markets. A 

subset of those values (for the markets in Madrid-La Coruña and La Coruña-Madrid OD 

pairs) is presented in Table 7 in Appendix A. We use the classical F-test for linear models 

to test the statistical significance of this model. This test statistic equals 4.9817. Using the 

critical value of 3.4668 (with two degrees of freedom in the numerator and 21 degrees of 
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freedom in the denominator; 0.95 confidence level), we reject the null hypothesis that the 

naïve model (with only the market sizing parameter) is as good as the full model. The 

r-squared value for the linear model fit described here was found to be 66.83%. 

Table 4: Demand stimulation model estimation data summary 

Type of Data Before After 

Average Data range Average Data range 

Overall unconstrained demand 445.3 [318.7, 693.5]  578 [459.3, 1086.1]  

Price (Euro) 182.2 [102.5, 392.1]  148.3 [62.1, 291.3]  

Travel time (hours) 1.30 [1.25, 1.36]  1.98 [1.25, 2.98]  

Frequency (per week) 75.4 [48, 144]  101.3 [77, 252]  

The unconstrained passenger demand in each market w
 ( wd ) is assumed to vary as 

described in (29). Therefore, the captured demand ( w

a ) by airline a  in each market w  

is , ,

|=w od od

a a air air w wP P H d  


  , where  od od

odw w a railod a A
d M p tt sd f f




     
  . Thus, 

in the extended IASCOM formulation, the first term on the right side of constraints (7) is 

replaced by the following (note that for each market w  it still depends on one frequency 

decision variable: od

af ): 

 

 

( | ) ( | , )

( '| ) ( '| , )

( | ) ( | )
'

( '| , )

( '| , )

log log

log log

w v a w

odw odw v a w od od

a railv rail w v null w
Z a A a A

v a w w
air

a A

v a w w
air

a A

e ttair air

e ttair air

e e e sd
M p tt

e e f f
e e e

 






  







 

 


   









 
 
 
    



  

. (30) 

5.2 Model validation against post-HSR entry scenario 

In order to validate the optimization model’s prediction accuracy, we compare the model 

predictions about the airline response to HSR entry with the actual response by the airline 

after the HSR entry. We study the entry of the HSR in two different case studies: 

Madrid-Barcelona/Barcelona-Madrid and Madrid-Malaga/Malaga-Madrid. The results for 

Barcelona-Madrid and Malaga-Madrid OD pairs are found to be similar to 

Madrid-Barcelona and Madrid-Malaga respectively, and hence are omitted here. The OD 

pair Madrid-Seville is not included in this validation because HSR-entry in it took place 

several years ago (in 1992) when the airline’s resource availability (e.g., aircraft availability 
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and capacity) was significantly different than what it is now. In order to estimate the 

demand stimulation model parameters for each of the two case studies, we use the data 

before and after the HSR entry for other OD pairs. For example, in the 

Madrid-Barcelona/Barcelona-Madrid case study, we use the data from 

Madrid-Seville/Seville-Madrid, and Madrid-Malaga/Malaga-Madrid OD pairs. 

The expansion of the HSR into the Madrid-Barcelona and Barcelona-Madrid markets took 

place during February 2008. Consequently, we study different scenarios drawn from year 

2008. Each scenario corresponds to one week of each month of year 2008 (from February 

to December, that is, eleven scenarios). The expansion of the HSR into the Madrid-Malaga 

and Malaga-Madrid markets took place during December 2007. Consequently, each 

scenario corresponds to one week of December 2007 and one week of each month of year 

2008 (that is, thirteen scenarios) (Ferropedia, 2014). For each of the scenarios we solve a 

restricted version of the extended IASCOM with the demand model in (30). This restricted 

version of the optimization model optimizes the schedule in the OD pair under study and 

assumes a fixed schedule for the rest of the network (provided by the airline). It is 

important to note that in predicting the post-HSR entry scenario for the market under 

study, we use information from other similar markets and the pre-HSR entry data from 

the market under study. Note that this is similar to the type of information that an airline 

will have at its disposal when making decisions about its response to an impending entry 

by an HSR operator. So we use these results to validate our approach.  

 

(a) (b) 

Figure 3: Variation in (a) air and rail market shares over an 11 month period after the entry 

of the HSR in the Madrid-Barcelona OD pair, and (b) air and rail market shares over a 13 
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month period after the entry of the HSR in the Madrid-Malaga OD pair 

Figure 3 shows the variation in the air and rail market shares with the entry of the HSR in 

(a) the Madrid-Barcelona OD pair and (b) the Madrid-Malaga OD pair. Note that the HSR 

slowly increased its frequency over time in these markets and then stabilized. The solid 

red lines show the air market share variation (the thicker one the actual market share and 

the thinner one the predicted market share) and the dashed blue lines show the rail 

market share variation (the thicker one the actual market share and the thinner one the 

predicted market share). In the Madrid-Barcelona OD pair the HSR entry took place during 

February 2008. The air market share dropped and the rail market share increased from 

February through September almost uniformly and then somewhat stabilized from 

October through December. In the Madrid-Malaga OD pair the HSR entry took place 

during December 2007. The air market share dropped and the rail market share increased 

from this point until September and then stabilized from October to December. As shown 

in Figure 3, the model-predicted market shares for the air and rail modes are found to be 

reasonably close to their actual values. 

Table 5 shows a summary of the results obtained in this validation process. For each OD 

pair under study, we show two different items: 
1MAPE  (see equation 24) and 

airMAPE  

(see equation 31), both calculated for the OD showed in the first column of the table. 

, ,

,

ˆ

h

h

w w

air air

w W Z

air w

air

w W Z

P P

MAPE
P

 







 

 





 

 
,  (31) 

where hW  is the set of the markets where the HSR was introduced, ,ˆ w

airP   is based on the 

solution provided by the IASCOM optimization, and ,w

airP   is based on the actual schedule 

operated by the airline. The table shows the values of 
1MAPE  and 

airMAPE  for every 

scenario. The last 13 columns of Table 5 represent the months of December 2007 through 

December 2008. As explained earlier, the values for Madrid-Barcelona and 

Barcelona-Madrid markets start from February 2008. Note that the values are reasonably 

small. The average MAPE values in terms of frequencies and air shares are 5.18% and 

5.71% respectively and all the MAPE values are found to be in the range between 3.63% 

and 8.29%. Thus the optimization model predictions are found to be quite close to the 

actual post-HSR entry scenario. 
1MAPE  measures the error in the frequency values. 

Therefore, the values for ODs Madrid-Barcelona and Barcelona-Madrid, and 

Madrid-Malaga and Malaga-Madrid are symmetric.  

Table 5: Mean Absolute Percentage Errors in IASCOM predictions in terms of frequencies 
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and air market shares 

OD Item Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Madrid-Barcelona 
1MAPE (%) - - 4.52 6.65 4.70 4.29 5.03 5.42 5.56 4.71 4.69 4.51 4.89 

airMAPE (%) - - 6.07 8.29 4.95 5.57 5.36 7.54 6.03 6.70 5.38 5.75 6.01 

Barcelona-Madrid 
1MAPE (%) - - 4.52 6.65 4.70 4.29 5.03 5.42 5.56 4.71 4.69 4.51 4.89 

airMAPE (%) - - 6.12 8.26 5.54 5.39 5.71 6.91 6.15 6.42 4.92 5.41 6.09 

Madrid-Malaga 
1MAPE (%) 4.03 7.51 6.07 5.80 5.09 5.61 5.13 5.26 4.19 5.45 5.10 5.10 5.10 

airMAPE (%) 4.15 7.85 5.89 5.67 4.83 5.48 5.60 4.90 3.63 5.39 5.31 5.31 5.31 

Malaga-Madrid 
1MAPE (%) 4.03 7.51 6.07 5.80 5.09 5.61 5.13 5.26 4.19 5.45 5.10 5.10 5.10 

airMAPE (%) 5.06 7.53 6.01 5.83 5.39 4.88 5.28 4.47 3.80 6.52 5.16 5.16 5.16 

 

The impacts of the HSR entry in the Madrid-Barcelona/Barcelona-Madrid OD pairs, and in 
Madrid-Malaga/Malaga-Madrid OD pairs are significantly different. There are several 
fundamental differences between the two OD pairs in terms of the exogenous data. Firstly 
Madrid-Barcelona distance is 618 km compared with Madrid-Malaga distance which is 534 
km. Secondly, passenger attributes are significantly different. In particular, the proportion 
of passengers belonging to business segment and the unconstrained demand values are 
both much greater for Madrid-Barcelona/Barcelona-Madrid OD pairs. Finally, products 
offered are also considerably different. The daily frequency in 
Madrid-Barcelona/Barcelona-Madrid OD pairs is usually significantly higher than the 
frequency value in Madrid-Malaga/Malaga-Madrid OD pairs. This is reflected in the 
qualitative differences between the Figures 3 (a) and 3 (b). Upon the entry of HSR in the 
Madrid-Barcelona market, the air market share continues to be above 50% while in 
Madrid-Malaga OD pair it drops considerably below 50%. 
 

5.3 Predicting airline response to a future entry of high speed rail 

In the near future, the Spanish government is planning to operate HSRs between Madrid 

and the region of Galicia, in the northwest of Spain (Ministerio de Fomento, 2012). 

Consequently, IBERIA will face the challenge again of modifying its schedule to compete 

not only against other airlines, but also against HSR, in these additional markets. 

The origin-destination pairs affected by this new competition are those in the Galicia 

region: Madrid-Vigo, Vigo-Madrid, Madrid-La Coruña, La Coruña-Madrid, Madrid-Santiago 

and Santiago-Madrid. For these experiments, we assume that the airlines do not change 

their available fleet. However, if we know about any changes to an airline’s fleet, then the 

IASCOM model makes it straightforward to test the impact of such changes on the optimal 

schedules. Initially, we assume that the airline will maintain pricing and revenue 

management practices to be the same as in the base case scenario and thus the base fares 

will be similar. We relax this assumption later in this section and provide insights into the 

patterns in optimal fare changes. 
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We solve the extended IASCOM with the demand stimulation model introduced in 

Subsection 5.1. Figure 4(a) shows the model’s solution in terms of IBERIA frequencies (on 

the y-axis) for several hypothetical scenarios characterized by different frequency values 

of operation of the HSR (on the x-axis). We assume a simultaneous entry of HSR into all six 

markets because they will be served along the same corridor. Therefore, we assume that 

the offered frequency in every market will be the same. Note that this is not due to any 

limitation of our models or approach, and can be easily modified to fit any other scenario. 

We make this assumption simply because this is the most likely scenario in reality. As 

before, the planning period is seven days. The average fare for HSR is assumed to be 

proportional to the number of kilometers in the trip and this proportionality constant is 

obtained as an average from the current HSR markets (Garcia and Luceño, 2010). 

The response is found to be similar for every market directly affected by the new 

competitor. As HSR starts operating at a small frequency in a new market, the airline’s 

frequency, as predicted by the optimization model, increases with increase in HSR 

frequency. By increasing the frequency of its services, the airline strives to make its 

schedule attractive to the passengers and attempts to maintain a large share of the 

market. As HSR frequency increases further, there is a threshold point beyond which the 

predicted frequency of the airline starts decreasing until a second threshold frequency 

value is reached by HSR. Beyond that first threshold point it becomes too expensive for 

the airline to maintain a very high market share and finds it unprofitable to keep 

competing at a high frequency level against the rail operator. Beyond the second 

threshold point, the airline holds its frequency relatively steady until another (third) 

frequency threshold is reached by HSR. Beyond this third threshold, the airline stops 

serving that route and its frequency falls to 0. As the connecting passengers are not 

affected by the entry of HSR, they always choose to fly. Between the second and the third 

threshold points the airline continues to carry a relatively steady share of the connecting 

passengers but a uniformly decreasing proportion of the direct passengers. As fewer 

direct passengers select the airline due to competition from HSR, the flight leg starts 

becoming unprofitable, and thus, beyond the third threshold point, the optimal schedule 

for the airline does not serve those origin-destination pairs. Of course, the airlines can 

decide to continue operations in certain origin-destination pairs for reasons other than 

short-term profitability maximization, such as, maintaining the airline’s image or 

long-term growth strategy, etc. In such cases, the frequency will never be allowed to drop 

below a certain minimum value. 
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(a) (b) 

Figure 4: (a) Model-predicted IBERIA frequency in response to HSR frequency variation in 

origin-destination pairs of Madrid-Vigo, Madrid-La Coruña and Madrid-Santiago; (b) 

Model-predicted average IBERIA load factor in response to HSR frequency variation in the 

origin-destination pairs of Madrid-Vigo, Madrid-La Coruña and Madrid-Santiago 

Figure 4(b) depicts the average load factors for IBERIA for the origin-destination pairs 

Madrid-Vigo, Madrid-La Coruña and Madrid-Santiago as a function of the HSR frequency, 

as per the IASCOM solution. The curves for the remaining (opposite directional) 

origin-destination pairs with HSR entry were also found to be similar to those presented in 

Figures 4(a) and 4(b). Up to the first threshold point, average load factor decreases with 

increasing schedule frequencies as the airline attempts to maintain passenger share by 

increasing its own frequency (see Figure 4(a)). When the airline’s frequency is decreased 

beyond the first threshold point, the average load factor increases at first. However, it 

starts decreasing again until the point when flight legs are not profitable and service is 

discontinued. This decrease in the average load factors occurs while the frequency values 

are constant. This is due to the fact that connecting passengers always choose to fly and 

as the HSR frequency increases, increasingly fewer direct passengers choose to fly. 

 

With the IASCOM, we study tactical competition in which average fare is assumed to have 

a constant value. However, with the entry of new competitors IBERIA is likely to use 

pricing (in addition to schedule changes) to better compete with HSR, and consequently 

changes in average fare values are possible through changes in the airline’s pricing and 

revenue management practices for these markets (note that applying price reductions 
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makes the 
falf  values change). We analyze what might happen under four different 

price reduction scenarios, corresponding to a 10%, 20%, 30% and 40% reduction in 

IBERIA’s average prices in markets where the new HSR competitor has entered. We 

compare these four scenarios with the base scenario (with original prices). The reduction 

in average prices is only applied to the tickets of the airline under study, that is, IBERIA. 

We assume that IBERIA will be the first airline responding to the entry of the HSR. Then, 

the rest of the airlines are likely to propose a new schedule. This would lead to an iterative 

process until an equilibrium point is reached.  

In Figure 5(a), we show the IBERIA market share predicted by our model in response to 

HSR entry in the Madrid-La Coruña origin-destination pair for the base price and for 10%, 

20%, 30% and 40% reductions in base price. The curves for the remaining 

origin-destination pairs with HSR entry were found to be similar. As the ticket price is 

lowered from 0% through 20% of the original price, IBERIA market share increases. By 

reducing average ticket price, our model predicts that IBERIA could compete for a larger 

set of scenarios against HSR. However, this is not true for further price reductions from 

20% to 40%. By offering greater discounts in average prices, flight legs start becoming 

non-profitable. Our model results show that the number of frequencies is lowered and 

therefore, market share drops. In general, it is clear that for any scenario involving HSR 

entry, the loss of market share for IBERIA would be significant compared to the pre-HSR 

scenario.  

In order to evaluate a scenario where the other airlines match the price reduction by 

IBERIA, we run another set of four scenarios with price reduction matching by other 

airlines. Figure 5(b) shows the market share predicted by our model in response to HSR 

entry in the origin-destination pair Madrid-La Coruña with the price reduction by IBERIA 

also matched by the rest of the airlines. The results are found to be similar to those in 

Figure 5(a), except that IBERIA captures a lower number of passengers, compared to that 

in Figure 5(a), due to price reductions by the rest of the airlines and is able to compete for 

a smaller set of scenarios. Also, the market share gains achieved through moderate ticket 

price reductions were found to be lower when they are matched by the other airlines. 
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(a) (b) 

Figure 5: Model-predicted IBERIA market share in response to HSR frequency variation in 

the origin-destination pair of Madrid-La Coruña and with different levels of fare 

reductions: (a) by IBERIA alone, and (b) by IBERIA and the rest of the airlines 

The overall impact on total IBERIA profits of the scenario where the reduction in average 

fares is only applied to the IBERIA tickets is shown in Figure 6(a). With an increase in HSR 

frequency value, the predicted total profit decreases and eventually reaches a constant 

value beyond which the HSR frequency ceases to have any impact on our model’s 

predicted profit. This is due to the fact that our model predicts that IBERIA should exit 

from those markets where HSR has entered. Thus, there comes a point beyond which the 

increase in HSR’s frequency value has no effect on IBERIA’s profit. For the scenarios with 

proposed moderate fare reductions (10% and 20%), the total profit is greater than the 

profit in the base scenario. In particular, 20% fare reduction results in the highest 

predicted profit at all levels of HSR frequencies. However, more aggressive discounts in 

the average prices do not result in further profit increases because the operation of flight 

legs on those discounted markets might not be profitable due to the decreasing revenue 

per passenger. Moreover, due to these discounts, other markets might become relatively 

more profitable and the optimized schedule might increase the number of flight legs in 

those other markets at the expense of these markets with HSR entry. 

Figure 6(b) shows the predicted profit variation in response to variations in IBERIA’s 

average fares in markets affected by the HSR entry. Three different curves are depicted: 

each one represents a different HSR frequency value, namely, 20, 30 and 40. Note that the 

most likely frequency value for a real future scenario lies between these values (Ministerio 
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de Fomento, 2012). The results show that the profit reduction due to HSR entry is the 

least for a price reduction of the 20%, thus these results indicate that IBERIA will find it the 

most profitable to decrease the average fares by approximately 20% in these six markets 

with future HSR entry. Note that this study applies the same fare reductions for all six 

markets. 

 

 

 

(a) (b) 

 

Figure 6: (a) Model-predicted total IBERIA profit variation as a function of HSR frequency 

for different reductions in average fares by IBERIA alone; (b) Model-predicted total IBERIA 

profit variation as a function of fare changes for IBERIA alone for different HSR frequencies 

Table 6 shows the predicted IBERIA frequency values for different HSR frequency values 

and different IBERIA fare reductions for La Coruña-Madrid and Madrid-La Coruña OD pairs 

(results are identical for both these OD pairs due to symmetric schedules). The results for 

the rest of the OD pairs showed similar patterns. Each column (among columns 2, 4, 5, 6, 

7, 8, and 9) in Table 6 corresponds to a different HSR frequency (
od

railf ). Each row shows the 

model-predicted IBERIA frequency value, for the OD shown in the first column and for the 

IBERIA fare reduction shown in the third column in that row. The frequency value per fleet 

type is displayed in each cell of second row onward. For example, 0 /1/10  implies that 

there are 0 flight legs per week with A-319, 1 with A-320 and 10 with A-321 fleet type. The 

second column in the table considers the scenario before HSR entry. 
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These experiments have been performed assuming a fleet of size and composition 

matching that of IBERIA and assuming that the other airlines do not reduce their average 

fares. The results suggest that it might be advisable for IBERIA to make changes in its fleet 

to compete in markets with HSR entry. In the absence of HSR competition, the optimized 

schedule utilizes a heterogeneous fleet in the markets in the Galicia region (see Table 6). 

However, post-HSR entry, only the aircraft with the smallest number of seats are utilized 

in these markets especially in the scenarios without price reduction. This effect is also 

observed in the scenarios with price reductions. However, the price reductions slightly 

change the utilized fleet. For the scenarios with low HSR frequency and low price 

reductions, the optimized schedule utilizes a somewhat heterogeneous fleet. 

Nevertheless, as HSR competes with higher frequencies, the optimized fleet again almost 

exclusively uses the smallest-sized aircraft type. This suggests that the availability of 

smaller aircraft would make it possible for the airline carrier to compete more effectively 

against HSR. 

Table 6: Predicted IBERIA frequency values for different HSR frequency values and 

different IBERIA fare reductions for La Coruña-Madrid and Madrid-La Coruña OD pairs 

assuming that the other airlines do not reduce their average fares 

O.D\
od

railf  0 Price reduction (%) 7 14 21 28 35 42 

 

 

La Coruña-Madrid 

 

 

7/7/0 

0 20/0/0 13/3/1 14/2/0 15/1/0 7/0/0 0/0/0 

10 7/9/5 7/9/3 7/7/0 7/6/0 7/2/0 12/0/0 

20 7/7/7 7/7/4 6/7/2 7/5/0 10/3/0 12/0/0 

30 10/6/1 7/4/2 7/4/0 7/0/0 7/0/0 7/0/0 

40 14/4/0 8/4/0 7/0/0 7/0/0 7/0/0 0/0/0 

 

 

Madrid-La Coruña 

 

 

7/7/0 

0 20/0/0 13/3/1 14/2/0 15/1/0 7/0/0 0/0/0 

10 7/9/5 7/9/3 7/7/0 7/6/0 7/2/0 12/0/0 

20 7/7/7 7/7/4 6/7/2 7/5/0 10/3/0 12/0/0 

30 10/6/1 7/4/2 7/4/0 7/0/0 7/0/0 7/0/0 

40 14/4/0 8/4/0 7/0/0 7/0/0 7/0/0 0/0/0 

 

6. Conclusions 
The airline planning process involves solving problems such as frequency planning, 

timetable development and fleet assignment. All of them are directly related to passenger 

demand in that passenger demand influences the schedule decisions and the schedule 

influences passenger demand. Consequently, integration of appropriate customer 

behavior modeling into the schedule optimization models is needed in order to be able to 

solve these problems effectively. Moreover, competition from different modes and 

operators makes it difficult to estimate the number of passengers that an airline will 
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capture. 

We developed a tactical competition model for an airline considering multi-modal 

competition between air and high speed rail, and airline competition between legacy and 

low-cost carriers. At the core of our modeling approach was an integrated schedule 

optimization model that includes frequency planning, approximate timetable 

development, fleet assignment and passenger demand choice. The model accounts for 

passenger demand share competition, and captures the impacts of schedule decisions on 

passenger demand. We developed and estimated a nested logit model of multi-modal 

demand behavior and integrated it into the schedule optimization model. 

We calibrated the nested logit model using real data provided by IBERIA (the major 

Spanish airline). Then, we tested the integrated optimization model in a real network from 

IBERIA including other air and rail transportation options in Spain. We conducted 

sensitivity analysis to demonstrate the choice of model parameters and the robustness of 

our modeling approach to small changes in the parameter values. We found that the 

actual decisions taken by the airline are reasonably close to those predicted by our model. 

We evaluated multiple scenarios involving the entry of high speed rail in some markets, 

and we accounted for the possibilities of demand stimulation and airfare reductions as a 

result of the new services. We also validated our results using out-of-sample validation 

data from markets that had an entry of high speed rail in the past. Contingent on the 

competing airlines’ and the high speed rail's offered attributes, the model predicts the 

optimal decisions for IBERIA in order to retain passengers and maximize profits. The 

model provides interesting insights into the schedule changes, fleet composition changes, 

and fare changes that will help the airline cope effectively with the entry of high speed 

rail. 

In summary, we showed that the solution predicted by our integrated optimization model 

is close to the actual decisions being taken by the airline, implying that the current 

decision-making at IBERIA does take into account the multi-modal competition aspects. 

More importantly, our strong out-of-sample validation results indicate that the model is 

able to predict the airline response to HSR entry, and the resulting network performance 

metrics with a good level of accuracy. Consequently, the proposed modeling framework is 

attractive from the perspective of the airline operators. It allows them to plan better for 

the impending HSR entry by fine-tuning schedules, fleets and fares. The framework can 

facilitate careful evaluation of various scenarios (such as competitor actions, fleet 

changes, fare changes, etc.) before the actual HSR entry, allowing the airline to be better 

prepared to adapt to the changing competitive environment. 



45 
 

7. Acknowledgments 
This research was supported by project grant TRA2011-27791-C03-01 by the "Ministerio 

de Economía y Competitividad, Spain". We want to thank Virot Ta Chiraphadhanakul (MIT) 

for his helpful comments when the research was conducted. We also want to thank the 

associate editor and the anonymous referees for their helpful comments on the paper. 

 

References 

Barnhart, C., Kniker, T., Lohatepanont, M. (2002). Itinerary-Based Airline Fleet Assignment. 
Transportation Science, 36(2), 199–217. 

Barnhart, C., Cohn, A.M, Johnson, E.L., Klabjan, D., Nemhauser, G.L., Vance, P.H. (2003). 
Airline Crew Scheduling. In: Hall, R.W., Editor(s), Handbook of Transportation Science, 
International Series in Operations Research & Management Science 56, 517-560. 

Barnhart, C and Cohn, A. (2004). Airline Schedule Planning: Accomplishments and 
Opportunities. Manufacturing & Service Operations Management, 6(1), 3-22. 

Barnhart, C. (2009). Airline Schedule Optimization. In: Peter Belobaba, Amedeo Odoni and 
Cynthia Barnhart, Editor(s), The Global Airline Industry, Wiley. ISBN: 978-0-470-74077-4. 

Barnhart, C., Farahat, A., Lohatepanont, M. (2009). Airline Fleet Assignment with 
Enhanced Revenue Modeling. Operations Research, 57(1), 231–244. 

Beale, E.M.L, Tomlin, J.A. (1970). Special facilities in a general mathematical programming 
system for non-convex problems using ordered sets of variables. Mathematical Methods 
of Optimization. In Proceedings of the fifth international conference on operational 
research; Lawrence, J., Ed.; Tavistock Publications: London, England; pp 447-454. 

Behrens, C., Pels, E. (2012). Intermodal competition in the London–Paris passenger 
market: High-Speed Rail and air transport. Journal of Urban Economics, 71, 278–288. 

Belobaba, P. (2009). Overview of Airline Economics, Markets and Demand. In: Peter 
Belobaba, Amedeo Odoni and Cynthia Barnhart, Editor(s), The Global Airline Industry, 
Wiley. ISBN: 978-0-470-74077-4. 

Cadarso, L., Marín, Á. (2013). Robust passenger oriented timetable and fleet assignment 
integration in airline planning. Journal of Air Transport Management, 26, 44–49. 

Desaulniers, G., Desrosiers, J., Dumas, Y., Solomon, M. M., Soumis, F. (1997). Daily aircraft 
routing and scheduling. Management Science, 43(6), 841–855. 

Dumas, J., Aithnard, F., Soumis, F. (2009). Improving the objective function of the fleet 



46 
 

assignment problem. Transportation Research Part B: Methodological, 43(4), 466-475. 

Ferropedia. (2014). Accessed October 2014. 
http://www.ferropedia.es/wiki/Tr%C3%A1ficos_AVE_y_LD_corredor_Barcelona-Madrid 

Garcia, A., Luceño, B. (2010). Relación entre el precio básico medio del billete de tren con 
la velocidad media y la distancia recorrida por el viajero. Proceedings of Congress of 
Transport Engineering, Madrid 2010. ISBN: 978-84-96398-41-2. 

Garrow, L. (2012). Customer Modeling. In: Barnhart, C. and Smith, B.C., Editor(s), 
Quantitative Problem Solving Methods in the Airline Industry, International Series in 
Operations Research & Management Science, Springer, 169, 1-34. ISBN 
978-1-4614-1607-4. 

Greene, W. H., Hensher, D. A. (2003). A latent class model for discrete choice analysis: 
contrasts with mixed logit. Transportation Research Part B: Methodological, 37(8), 
681-698. 

Grosche, T., Rothlauf, F., Heinzl, A. (2007). Gravity models for airline passenger volume 
estimation. Journal of Air Transport Management, 13, 175–183. 

Guo, P., Xiao, B., & Li, J. (2012). Unconstraining methods in revenue management systems: 
Research overview and prospects. Advances in Operations Research, 
doi:10.1155/2012/270910. 

Hane, C.A., Barnhart, C., Johnson, L.E., Marsten, R.E., Nemhauser, G.L., Sigismondi, G. 
(1995). The fleet assignment problem: solving a large scale integer program. Mathematical 
Programming, 70, 211-232. 

Hansen, M. (1990). Airline competition in a hub-dominated environment: an application of 
noncooperative game theory. Transportation Research Part B, 248(I), 27-43.  

Harsha, P. (2008). Mitigating airport congestion: Market mechanisms and airline response 
models. Doctoral dissertation, Massachusetts Institute of Technology, Cambridge, MA. 

Hong, S., Harker, P.T. (1992). Air traffic network equilibrium: toward frequency, price and 
slot priority analysis. Transportation Research Part B, 26B(4), 307-323. 

Jacobs, T.L., Smith, B.C., Johnson, E.L. (2008). Incorporating Network Flow Effects into the 
Airline Fleet Assignment Process. Transportation Science, 42(4), 514–529. 

Jehanno, A., Palmer, D., and James, C. (2011). High Speed Rail and Sustainability. 
International Union of Railways.  
http://www.uic.org/etf/publication/publication-detail.php?code_pub=531E 

Lohatepanont, M., Barnhart, C. (2004). Airline Schedule Planning: Integrated Models and 

http://www.ferropedia.es/wiki/Tr%C3%A1ficos_AVE_y_LD_corredor_Barcelona-Madrid
http://www.uic.org/etf/publication/publication-detail.php?code_pub=531E


47 
 

Algorithms for Schedule Design and Fleet Assignment. Transportation Science, 38(1), 
19-32. 

Ministerio de Fomento, Spain. (2012). Plan de Infraestructuras, Transporte y Vivienda 
(PITVI 2012-2024). 
http://www.adif.es/es_ES/infraestructuras/planes_infraestructura/planes_infraestructura
.shtml 

Pita, J., Barnhart, C., Antunes, A.P. (2012). Integrated Flight Scheduling and Fleet 
Assignment Under Airport Congestion. Transportation Science, Articles in Advance, 1-16 
http://dx.doi.org/10.1287/trsc.1120.0442. 

Román, C., Espino, R., Martín, J.C. (2007). Competition of high-speed train with air 
transport: The case of Madrid-Barcelona. Journal of Air Transport Management, 13, 
277-284. 

Simpson, RW. (1970). A market share model for US domestic airline competitive markets. 
Working paper, MIT Flight Transportation Laboratory, Massachusetts Institute of 
Technology, Cambridge, MA. 

Vaze, V. (2011). Competition and Congestion in the National Aviation System: Multi-agent, 
Multi-stakeholder Approaches for Evaluation and Mitigation. Doctoral dissertation, 
Massachusetts Institute of Technology, Cambridge, MA. 

Vaze, V., Barnhart, C. (2012a). Modeling Airline Frequency Competition for Airport 
Congestion Mitigation. Transportation Science, 46(4), 512-535.  

Vaze, V., Barnhart, C. (2012b). An Assessment of the Impact of Demand Management 
Strategies for Efficient Allocation of Airport Capacity. International Journal of Revenue 
Management, 6(1/2), 5-27. 

Wei, W., M. Hansen. (2005). Impact of aircraft size and seat availability on airlines' 
demand and market share in duopoly markets. Transportation Research Part E: Logistics 
and Transportation Review, 41(3), 315-327. 

Wei, W., Hansen, M. (2007). Airlines’ competition in aircraft size and service frequency in 
duopoly markets. Transportation Research Part E: Logistics and Transportation Review, 43, 
409-424. 

Wen, C. H., Lai, S. C. (2010). Latent class models of international air carrier choice. 
Transportation Research Part E: Logistics and Transportation Review, 46(2), 211-221. 

Wickham, R. R. (1995). Evaluation of forecasting techniques for short-term demand of air 
transportation. Report R95-7, Flight Transportation Laboratory, Massachusetts Institute of 
Technology. 

http://dx.doi.org/10.1287/trsc.1120.0442


48 
 

Yan, S., Tang, C-H., Lee, M-C. (2007). A flight scheduling model for Taiwan airlines under 
market competitions. Omega, 35, 61-74. 

Wang, D., Shebalov, S., Klabjan, D. (2012). Attractiveness-Based Airline Network Models 
with Embedded Spill and Recapture. Working paper (submitted for publication). 

Zito, P., Salvo, G., La Franca, L. (2011). Modelling Airlines Competition on Fares and 
Frequencies of Service by Bi-level Optimization. Procedia – Social and Behavioral Sciences, 
20, 1080-1089. 


