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Abstract 

Airlines make decisions about pricing and daily service frequency in a competitive environment. We 

develop a two-stage game-theoretic model of airline competition, where airlines make frequency 

decisions during the first stage and fare decisions during the second stage with knowledge of the first 

stage decisions. We prove that for a simplified two-player form of this game, with assumptions of 

unrestricted seats-per-flight and only non-nonstop passengers, the first-stage payoff function of each 

player is concave with respect to that player’s frequency strategy. With the same assumptions, we also 

prove that this two-stage game belongs to the class of sub-modular games. Concavity and sub-modularity 

are shown by numerical experiments to hold for one player, two player, and three player games across a 

wide range of parameter values, with quadratic functions of player frequencies providing a good 

approximation (R2  > 0.9) for airline payoffs in all cases. We use solve this model for an 11-airport, four-

airline network using the myopic best-response learning heuristic, and the frequency predictions from this 

solution are validated against actual frequency data from this network.  This paper demonstrates that a 

two-stage frequency-fare game of airline competition can exhibit properties (concavity and sub-

modularity) that allow for a computationally tractable equilibrium solution across a wide range of 

parameter values and a good fit with observed airline frequencies.  

Introduction 

Airlines make fare and capacity allocation decisions in a competitive environment. Capacity decisions, 

encompassing decisions about seats-per-flight and frequency of service, affect both the operating costs 

and fare revenues of airlines. These decisions have significant implications for the performance of the air 

transportation system as a whole: over- and under-allocation of airline capacity has been shown to result 



in billions of dollars in costs to airlines and passengers (Ball et al., 2010; Kahn, 1993), wastage of system 

resources (Vaze and Barnhart, 2012a; Morisset and Odoni, 2011), passenger inconvenience (Barnhart et 

al., 2014; Wittman, 2014) and environmental damages (Schumer and Maloney, 2008). Decisions about 

capacity and fare are typically made sequentially, on different timelines. Capacity decisions are often 

made weeks or months in advance of the flights in question, with only an approximate understanding of 

future fare decisions.  On the other hand, fare decisions can be made days or even minutes in advance 

with knowledge of prior scheduling. Moreover, frequency and fare decisions of different airlines are 

interdependent, both serving as tools in an airline’s competitive arsenal: one could expect a higher 

frequency or lower fare than competing airlines to be more attractive to passengers seeking to travel on a 

particular route.   The effects of frequency and fare decisions on passenger demand and the 

interdependency of these decisions between airlines competing across a network of airports means that 

they are important factors in the performance of the airline transportation system as a whole, and  

suggests the importance of developing tractable models that accurately describe their dynamics. Vaze and 

Barnhart (2012a, 2012b), for example, studied the role of airline frequency competition in airport 

congestion, and used a model of airline frequency competition to develop a strategy for reduction of 

passenger and flight delays as well as an improvement in airline profits.   

In this paper, we develop a two-stage game theoretic model of airline competition, demonstrate its 

tractability across a range of assumptions and parameter values, and validate its predictions against 

observed airline behavior. This two-stage game approach accounts for both the interdependence of 

competing airline behaviors and the sequential nature of frequency and fare decisions used in practice. 

Furthermore, daily frequencies of airlines within a market tend to hold roughly constant for multi-month 

time periods (see Figure 1), suggesting that some form of frequency equilibrium may be a solution 

concept worth exploring. We assume that seats-per-flight are held constant and that all passengers are 

nonstop. We first prove analytically that for a simplified version of this model, with two airlines 

competing in a market with infinite seating capacity and the absence of a no-fly option for passengers, 



that the payoff function of each airline in the first stage frequency game is concave with respect to that 

player’s frequency strategy. Additionally, we prove analytically that this simplified model belongs to the 

class of sub-modular games, and that for two-player games, changing the sign of the strategy space 

transforms the game into a super-modular game. We then extend our model, relaxing our assumptions of 

unlimited seating and the absence of a no-fly option for passengers, and demonstrate numerically that for 

a range of passenger utility and aircraft capacity parameter values, concavity and sub-modularity 

properties hold by fitting airline payoffs to quadratic functions of airline frequencies with high (> 0.9) 

values of R2. These concavity and sub-modularity results allow us to formulate a suitable equilibrium 

solution concept and employ a tractable solution heuristic. We use this heuristic to solve for subgame 

perfect Nash Equilibrium for four airlines making frequency decisions across a network of 11 airports in 

the western United States, using supply and demand data from 2007 available on the Bureau of 

Transportation Services (BTS) online database.  The frequency estimates from this solution are then 

validated against the observed frequencies of these airlines over the same period, which we use to 

calibrate the payoff functions of each airline to find a reasonable concordance of predicted and observed 

frequencies.  

A number of previous studies have taken a game-theoretic approach to modeling frequency and fare 

competition. Hansen (1990) solved an airline frequency competition game using successive airline profit 

optimizations for 52 U.S. airports and 28 airlines, though model predictions showed some significant 

divergences with empirical data. Adler and colleagues published a series of studies using simultaneous 

equilibrium approaches to model frequency, seat allocation and fare decisions (Adler, 2001; 2005) or fare 

decisions alone (Adler and Smilowitz, 2007) as the second stage of a two-stage game (following route 

planning in the first stage), and simultaneous frequency, seat allocation and fare decisions as a one stage 

game (Adler, Pels, and Nash, 2010). Other studies solve single-stage game theoretic models to Nash 

equilibrium for frequency decisions (Vaze and Barnhart, 2012a; 2012b; and 2015), fare decisions 

(Aguirregabiria and Ho, 2012), simultaneous frequency and fare decisions (Hong and Harker, 1992; Pels, 



Nijkamp, and Rietveld, 2000; Zito, Salvo and La Franca, 2011; and Hansen and Liu, 2015), simultaneous 

frequency and seat allocation decisions (Wei and Hansen, 2007), and simultaneous frequency, fare and 

seat allocation decisions (Brueckner, 2010).  

Treatment of two-stage frequency-fare games is more limited, and focused on two airline competition in a 

single market. Dobson and Lederer (1993) use heuristic methods to solve a single-market, two-airline 

game, with airline schedules decided before fares. Schipper, Rietveld, and Nijkamp (2003) analyze the 

shift from monopoly to duopoly equilibria following airline deregulation by simulating a single-market, 

two-airline two-stage frequency-fare game. Brueckner and Flores-Fillol (2007) analytically compare the 

properties of single-market, two-airline games with simultaneous frequency and fare decisions and those 

with sequential frequency and fare decisions. Hansen and Liu (2015) present a numerical example of 

single-market, two-airline two-stage game. Several studies have stressed the need to develop two-stage 

capacity fare game theoretic models in order to account for the sequential nature of these decisions 

(Dobson and Lederer, 1993; Norman and Strandenes, 1994; Schipper, Rietveld and Nijkamp, 2003; 

Brueckner and Flores-Fillol, 2007; Hansen and Liu, 2015), but there are very few analytical, 

computational, or empirical results available for such models. 

This research contributes to the airline competition literature by demonstrating the tractability of a two-

stage frequency-fare competition game that accurately reflects airlines’ sequential decision-making 

process, and efficiently solving this model and validating the results against observed airline behavior in 

an 11-airport network with four competing carriers. It is the first study to prove concavity and sub-

modularity properties of such a game analytically for a simplified case, and to numerically demonstrate 

the robustness of these properties in more complex models. These properties allow us to ensure a tractable 

framework that can be used to apply our two-stage frequency-fare model to more realistic competitive 

networks than the single-market, two-airline case typically considered for this class of games.  

 



 

Figure 1: Flights per day, daily (top) and six day rolling average (bottom) of carriers competing in the SFO-LAS 

market, over the course of 2007.  

 

Model  

The two-stage game theoretic framework we use in this paper models frequency decisions as the first 

stage of each airline over a network, and the second stage as the fare pricing decisions of those airlines. 

While airline capacity allocation decisions modeled in the first stage of our game also include decisions 

about number of seats per flight in practice, we focus on frequency decisions as the critical component of 

capacity-based competition. While frequency and seats-per-flight decisions both affect airline carrying 

capacity, frequency decisions also significantly affect the attractiveness of a particular airline to 

passengers, with higher frequencies providing passengers with more flexible and convenient travel 

schedules (Belobaba, P. 2009a). In addition, major airlines typically serve short and medium haul U.S. 

markets using a fleet with low variability in the number of seats per flight, while frequency decisions in 

such markets often varies significantly both across years on the same origin-destination segment, and 



between segments in the same year.  Table 1 displays the average values of the coefficient of variation 

(the ratio of mean to standard deviation) of frequency and seats-per-flight across years and across 

operating segments for major operating segments, with values calculated using data from the Bureau of 

Transportation Statistics Air Carrier Statistics Database (BTS, 2015a).  

 

Airline Across Years Across Segments 

Seats-per-Flight Frequency Seats-per-Flight Frequency 

American Airlines (AA) 4.7% 12.7% 13.3% 60.2% 

Delta Airlines (DL) 6.3% 21.7% 15.9% 67.9% 

United Airlines (UA) 5.3% 27.3% 21.7% 67.1% 

US Airways (US) 6.3% 16.9% 15.4% 58.6% 

Southwest Airlines (WN) 3.5% 16.6% 1.8% 70.0% 

Table 1: Variability in Seats-per-Flight and Frequency: Measured as Average Values of Coefficients of Variation 

 

In this paper, frequency decisions are estimated as the equilibrium found by solving the interdependent 

payoff maximization problems for each airline. We define a market as an origin-destination pair of 

airports, and notate the set of markets being competed in as R. We denote the set of competing airlines as 

A. 

The payoff function for each airline is given as the difference between the revenue and cost of operation 

for each market. Revenue for an airline a in market m is computed as  

 

Reva,m= min (𝑀𝑚(𝑀𝑆𝑎,𝑚), 𝑓𝑎,𝑚𝑠𝑎,𝑚)𝑝𝑎,𝑚 

 

Where 𝑀𝑎,𝑚 is the size of the market for that origin-destination pair, 𝑠𝑎,𝑚 is the seating capacity per 

flight, and 𝑀𝑆𝑎,𝑚 is the airline market share. We model market share using a multinomial logit model, an 



approach widely used in prior literature for air travel demand (Garrow, 2012). We explore two random 

utility formulations of airline market share, one based on the often-cited “s-curve” relationship between 

frequency share and market share, and the other based on the concept of schedule delay, or the average 

difference between departure times and departure times desired by passengers.  In the former, logit 

passenger utility is given by a linear combination of fare and a logarithmic transformation of frequency, 

consistent with the S-curve model of the relationship between market-share and frequency-share (Hansen 

and Liu, 2015; Vaze and Barnhart, 2015). Thus, for airline a and market m and the set of airlines 

competing in m notated as Am, with the positive parameters α  and 𝛽 (coefficients of utility of frequency 

and fare, respectively), 𝑝𝑎,𝑚 as the fare, 𝑓𝑎,𝑚 as the frequency, and exponential of the utility of the no-fly 

option 𝑁𝑚, the market share of carrier a can be expressed as  

 

𝑀𝑆𝑎,𝑚 =
𝑒α𝑙𝑛(𝑓𝑎,𝑚)− 𝛽𝑝𝑎,𝑚

𝑁𝑚 + ∑ 𝑒α 𝑙𝑛(𝑓𝑖,𝑚)− 𝛽𝑝𝑖,𝑚𝑖∈𝐴𝑚

    (1) 

 

With prices equal and in the absence of a no-fly alternative, frequency share alone determines market share, 

frequency share in (1) completely determines market share, following an s-shaped curved whose shape is 

modulated by α.  Market share can also be captured using the schedule-delay model, as discussed in (Hansen 

and Liu, 2015). In this case, market share for airline a takes the following form: 

 

𝑀𝑆𝑎,𝑚 =
𝑒−φ𝑓𝑎,𝑚

−𝑟− 𝛽𝑝𝑎,𝑚

𝑁𝑚 +∑ 𝑒−φ𝑓𝑖,𝑚
−𝑟− 𝛽𝑝𝑖,𝑚

𝑖∈𝐴𝑚

    (2) 

 

Here φ and r are positive parameters modulating the utility of frequency. Hansen and Liu (2015) argue that 

this model describes a more plausible relationship between frequency share and market share. For instance, 

market share in this model depends on both frequency share and competitor frequency, such that an airline 



cannot simply dominate the market share of an already high frequency market by arbitrarily increasing its 

own frequency, as in the s-curve formulation.  

Airline operating cost is typically modeled as a linear function of frequency in airline competition 

literature. An exception to this is the use of the Cobb-Douglas function (Adler and Berechman, 2001; 

Adler, 2001; 2005), expressed as [∑ (𝑓𝑘)
𝛼

𝑘∈𝐴𝑟𝑐 ]𝛽, with Arc being the set of all legs in an airline’s 

network, and 𝑓𝑘 being the number of flights per week offered on leg k, for parameters 𝛼, 𝛽 both > 0, 

estimated as  𝛼 = 1.2 and 𝛽 = 0.7 by Adler (2005). With these values, we found this function to be 

approximated by a linear function with an R2 of 0.9978 over a plausible range of frequencies (see Figure 

1).  

 

 

Figure 1: Cobb-Douglas cost function, fitted to a linear function of frequency 

 

Thus, with Cost(a,m) = ca,mfa,m for airline a and market m, where with ca,m as cost per flight in market m, 

the payoff function of airline a over a network of airports is given by 

π𝑎 = ∑ min (𝑀𝑎,𝑚𝑀𝑆𝑎,𝑚,  𝑓𝑎,𝑚𝑠𝑎,𝑚) 𝑝𝑎,𝑚 −  𝑐𝑎,𝑚𝑓𝑎,𝑚      (3)
𝑚∈𝑀𝑎
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Analytical Results for a Simplified Model 

We now turn to a simplified version of the above model to analytically prove the following theorems for 

either market share function, (See Appendix I for full proofs), assuming the above payoff function in the 

single market, two carrier case, with the absence of a no-fly option (𝑁𝑚 = 0) and infinite seating on each 

flight: 

Proposition 1: The second-stage fare game always has unique pure strategy Nash equilibrium. 

 

Proposition 2: In the first stage of a two-stage frequency-fare game with constant seats-per-flight and no 

connecting passengers, assuming the absence of a no-fly option, infinite seating on each flight and two 

carriers in a single market, each airline’s payoff πi  for i ϵ {1, 2}  is concave in airline i’s frequency 

strategy, across plausible parameter ranges.1 That is,  

𝜕2𝜋𝑖

𝜕𝑓𝑖
2 < 0 for 𝑖 𝜖 {1, 2}   

 

Proposition 3: The first stage of a two-stage frequency-fare game with constant seats-per-flight and no 

connecting passengers, assuming the absence of a no-fly option, infinite seating on each flight and two 

carriers in a single market, profit functions are submodular functions in the overall strategy space. That is,  

𝜕2𝜋𝑖
𝜕𝑓1𝜕𝑓2

< 0 for 𝑖 𝜖 {1, 2}       

Corollary 1: By changing the sign of the frequency strategy space of one of the carriers, we can 

trivially convert the function into a super-modular function in the overall strategy space. That is,  

                                                           
1 For the s-curve model, this holds for all cases where ( α < 2.4456), a conservative bound with respect to 

empirically estimated values (typically 1.3-1.7), see Belobaba (2016).  For the schedule delay model, concavity 

guarantees depend on both φ and  r, see proof of theorem 1 in Appendix I for a discussion of these values.  



𝜕2𝜋𝑖
𝜕𝑓1𝜕𝑓2

> 0 for 𝑖 𝜖 {1, 2}   

These results are significant because they demonstrate that subgame-perfect pure strategy Nash 

equilibrium is a credible and tractable solution concept for our simplified two-stage game. In particular, 

the existence and uniqueness results indicate the suitability of pure strategy Nash equilibrium as a 

solution concept for the second-stage game. Taking untransformed frequency strategies to be in the range 

[ϵ, F], where ϵ is some small positive number less than 1, and F is some large positive number,2 the 

supermodularity of the payoff functions puts the first stage game in the class of supermodular games. For 

these games, the existence of a pure-strategy Nash equilibrium is guaranteed, and a broad class of 

adaptive learning dynamics (including best response dynamics and fictitious play) converge to the set of 

interval bounded by the largest and smallest Nash Equilibria, as ordered by strategy profile (Milgrom and 

Roberts, 1990; Chen and Gazzale, 2004). If there is a unique equilibrium, these dynamics converge to it. 

Taking the same (untransformed) frequency stagy ranges, the game can also be cast as a submodular 

game. In this case, convergence of simultaneous best response dynamics from the infimum or supremum 

of the strategy space implies a unique Nash equilibrium and the convergence of the same class of learning 

dynamics above to it. In the two-player case, since the game can also be cast as a supermodular game, the 

reverse also holds: uniqueness of the Nash Equilibrium implies the convergence of these learning 

dynamics.  Concave first-stage payoffs, not guaranteed for one-stage models (Hansen 1990), also ensure 

the existence of a first stage purse-strategy Nash equilibrium independent of supermodularity (Rosen 

1965),  and additionally ensure that first stage payoff maximization problems (as part of a sequential best 

response dynamics, for instance)  are efficiently solvable and have a unique optimum.  

 

                                                           
2 These assumptions are made order to guarantee compactness of strategy spaces and continuity of profit functions. 

They can be justified by the notion that an airline must have some presence in a market to be considered a player in 

that market, and that airlines have a finite (though possibly large) supply of craft they can deploy.  



This analysis implies that a two-stage approach to modelling frequency and fare competition induces 

properties in the payoff functions that improve the credibility and tractability of subgame perfect Nash 

equilibrium. In other words, a more realistic approach to the sequential nature of airline decision making 

makes a game-theoretic approach to analyzing airline decisions more attractive, both computationally and 

behaviorally. The existence of these properties in this simple case suggests that more complex models 

may show some similar favorable properties. Analytical approaches become substantially more difficult 

as the strong assumptions of this 2-player model are relaxed, so we turn to computational approaches to 

extend our results to more realistic models.  

 

Numerical Results for Extended Models 

We now relax the assumptions of 2 players, absence of a no-fly option and connecting passengers, and  

unlimited seating, and numerically test the concavity and submodularity results proven above for the 

simplified case for a range of parameter values. We first compute approximate equilibrium fare vectors 

for the second stage game for a range of plausible first stage (frequency) strategy profiles. These profiles 

are generated by combinations of integer daily frequency strategies ranging from 1 flight per day to 20 

flights per day.  Second stage equilibria were computed by initializing fares for all players at 100, and 

numerically optimizing each player’s payoff (from equation (3)) in turn with respect to fare price. This 

iterative best rest response heuristic was repeated until fares for each player converged to within a 

threshold (change from the previous iteration of less than 0.1).  This was done for both market share 

functions (s-curve and schedule delay); for 1, 2 and 3 players; for varying numbers of seats per flight; for 

connecting passengers; for varying values of the exponential of the utility of the no-fly option; and for 

varying values of the utility parameters for frequency and fare (β, α for the s-curve model, φ and r for the 

schedule-delay model). Market size M was set at 1000 and cost per flight set at 10000. For computational 

feasibility, parameters were varied one at a time for each number of players, with defaults of 𝛼=1.29, 

𝛽=0.0045, N = 0.5 and number of seats  = 125 for the s-curve model, and r = 0.456 (as per Douglas and 



Miller, 1974), φ = 5.1  (as per Hansen and Liu 2016),  𝛽=0.012 (as per Hansen and Liu 2016), N = 

0.005, and numbers of seats = 125 for the schedule delay model. In all cases, this myopic best response 

heuristic converged to an equilibrium, suggesting that second stage fare equilibria for our model exist in 

practice across a broad range of scenarios. These results link the analytically demonstrated existence and 

uniqueness results of Proposition 1 with a broader landscape of more realistic but analytically intractable 

scenarios.   Ranges of varied parameters were chosen to encompass values found in literature and in 

practice. Tables 2 and 3 list the ranges tested for each parameter and the increments these parameters 

were varied by for the s-curve and schedule-delay models respectively. 

Parameter Range Tested Testing Increments 

N 0 to 1 0.1 

𝛼 1 to 2 0.1 

𝛽 0.001 to 0.01 0.001 

Seats-per-flight (S) 25-250, and unlimited seating 25 

Table 2: Parameter ranges tested against parameter defaults using s-curve model of market share 

 

Parameter Range Tested Testing Increments 

N 0.0001 to 0.005 0.005 

𝑟 0.1 to 1 0.1 

φ 1 to 10 1 

𝛽 0.001 to 0.025 0.001 

Seats-per-flight (S) 25-250, and unlimited seating 25 

Table 3: Parameter ranges tested against parameter defaults using schedule-delay model of market share 

 

For example, Figure 2 shows player 1’s second stage equilibrium fare values in a 2-player game 

following the s-curve market share formulation α at 1.29, β at 0.0045, N at 0.5, and unlimited seating.  



 

Figure 2: Player 1 fare equilibria for various frequency strategy profiles, with s-curve market share, 𝛼=1.29, 

𝛽=0.0045, N=0.5 and unlimited seating 

For each frequency strategy profile and parameter combination, we recorded equilibrium payoffs π𝑖 for i 

ϵ A. For parameter combination tested and for each player, this generated 20 payoff data points for a 

monopolistic market, 400 data points for a two-player market, and 8000 data points for a three-player 

market. We then fit quadratic functions of the market strategy profiles to their respective payoffs using 

linear regression, for each of these data sets, for each varied parameter combination. Polynomial 

coefficients of payoff functions were estimated for the following functional forms.  

For a monopolistic market, the profit of carrier 1 π1 flying a daily frequency of 𝑓1 was modeled: 

π1 ~ 𝛾0 +  𝛾1𝑓1 + 𝛾2𝑓1
2
 

For two-player markets, the model was:  

π1 ~ 𝛾0 +  𝛾1𝑓1 + 𝛾2𝑓2 + 𝛾3𝑓1
2 + 𝛾4𝑓2

2 + 𝛾5𝑓1𝑓2 

For three-player markets, the model was: 



π1 ~ 𝛾0 +  𝛾1𝑓1 + 𝛾2𝑓2 + 𝛾3𝑓3 +  𝛾4𝑓1
2 + 𝛾5𝑓2

2 + 𝛾6𝑓3
2 + 𝛾7𝑓1𝑓2 + 𝛾8𝑓1𝑓3 + 𝛾9𝑓2𝑓3 

For a 2-player non-stop and one-stop game: π1 ~ 𝛾0 + 𝛾1𝑓11 + 𝛾2𝑓12 + 𝛾3𝑓21 + 𝛾4𝑓22 + 𝛾5𝑓11
2 +

𝛾6𝑓12
2 + 𝛾7𝑓21

2 + 𝛾8𝑓22
2 +  𝛾9𝑓11𝑓21 + 𝛾10𝑓21𝑓22, with  𝑓12, for example, representing the frequency of 

player one on the second leg of a one stop market.  

Table 4 gives an illustrative example of regression results for a 2-player non-stop s-curve model. In this 

case, utility parameters are held at defaults (𝛼=1.29, 𝛽=0.0045, N=0.5) and the number of seats per flight 

are varied to encompass large and small craft.  

𝑆𝑒𝑎𝑡𝑠 𝛾
0
 𝛾

1
 𝛾

2
 𝛾

3
 𝛾

4
 𝛾

5
 R2 

250 122200.0 18135.0 -17856.0 -494.4 686.1 -533.0 0.955 

225 122250.0 18130.0 -17861.0 -494.2 686.2 -532.9 0.955 

200 122400.0 18115.0 -17876.0 -493.9 686.6 -532.4 0.955 

175 122640.0 18095.0 -17901.0 -493.4 687.2 -531.6 0.955 

150 123470.0 18030.0 -17989.0 -492.1 689.6 -529.0 0.955 

125 125340.0 17925.0 -18214.0 -490.9 696.0 -523.3 0.950 

100 129430.0 17885.0 -18838.0 -495.5 716.3 -514.1 0.939 

75 136710.0 18277.0 -20301.0 -512.8 773.0 -518.1 0.928 

50 142620.0 20224.0 -22355.0 -567.2 865.2 -578.9 0.927 

25 104880.0 27814.0 -18929.0 -743.5 773.0 -846.6 0.969 

Table 4: Regression coefficients and model R2 for 2-player s-curve-model, non-stop passengers case with 𝛼=1.29, 

𝛽=0.0045, N=0.5, and different seats-per-flight values. 

 

The coefficient of determination R2  for fitted models remained > 0.9 for nearly all parameter 

combinations tested, ranging from close to 0.9 on the low end (in 3 player games with 25 seats per flight, 

an extreme parameter value) to very close to 1. Exceptions were found in extreme or nonsensical 

parameter combinations: for example, in 1 player s-curve-model markets with very high 𝛽 (0.009 or 0.01) 

R2 dipped to 0.88 and 0.87 respectively, while in 1-player and 3-player s-curve markets with N=0 (absent 

no-fly option), R2 fell to 0.89 and 0.08 respectively. The uniquely poor fit found in the monopolistic 

markets with no no-fly option is not surprising, as in such markets a carrier unrealistically has no 

incentive to not charge unreasonably high ticket prices. The generally high R2 values found suggest that in 

nearly all cases, a quadratic function of carrier frequencies is able to capture a significant portion of the 

variation in equilibrium profits, and can provide a reasonable numerical approximation of the payoff 



functions described in equation (3), both for simple and more realistic cases. This gives us a tool to probe 

the robustness of the concavity and sub-modularity properties described in Propositions 2 and 3.  

Examining approximated payoff functions, we find that in all models with high R2  (>0.9),  the signs of 

estimated coefficients are consistent with both submodularity and concavity. For example, for the two 

player case, 𝛾3, the coefficient of the square of player 1’s daily frequency, and 𝛾5,  the coefficient of the 

interaction term  𝑓1𝑓2, are negative, consistent with concavity and submodularity respectively.  Note that 

this is the case across the range of seat values in Table 4. Figure 3 shows a quadratic approximation 

surface fitted to second-stage equilibrium payoffs (represented by points) with an R2 of 0.95: note that the 

approximation captures the concavity of player 1’s profit with respect to its frequency strategy.  For a 

more extensive enumeration of coefficient estimates and R2 values for varying parameter values, see 

Appendix II. While longer computational times precluded extensive parameter sensitivity tests for more 

than 3 players, more limited testing of 4 player games revealed similar results: good quadratic function 

approximations and coefficient estimates consistent with concavity and sub modularity. We also 

examined higher order polynomial approximations for even closer fits to payoff functions: quartic 

approximations tested on several models retained submodularity and concavity properties.  For the 

remainder of this paper, however, we will focus on quadratic approximations, as these allow for generally 

good approximations while remaining convenient for simple evaluation of function properties and 

keeping the number of parameters in check when calibrating models with real-word data.  

The robustness of sub-modularity and concavity properties in approximated payoff functions across a 

wide range of scenarios and parameter values extends the analytical results of Proposition 1 and 2 to a 

much richer and more realistic class of models. These results suggest that in general, sub-game perfect 

Nash equilibrium remains a highly tractable and credible solution concept for our game. That property of 

submodularity extends to more complex scenarios is consistent with the observation that games with this 

property tend to arise in strategic situations where there is competition for a resource (Roy and Sabarwal, 

2012): in this case, that resource is market share. While we cannot extend supermodularity trivially 



beyond the two-player case (as we no longer simply change the sign of one player’s strategy space to flip 

the sign of the cross derivative consistently), analogy with the two-player case, as well as a growing body 

of literature on games of strategic substitutes (e.g. Jensen, 2010; Roy and Sabarwal, 2012) provide us 

with a baseline for further exploration of the convergence of learning dynamics. Concave payoffs 

maintain the guarantee of the existence of first stage frequency equilibrium, and our quadratic 

approximations provide a simple mechanism for checking the uniqueness of first stage equilibrium using 

Rosen’s diagonal strict concavity condition. We find that with a few exceptions in extreme parameter 

values (high 𝛼,> 1.7), estimated coefficients across parameter ranges tested are consistent with a 

guaranteed unique first-stage equilibrium. Furthermore, concavity means that individual player bet 

responses have a unique and easily solved-for optimum, meaning that practical solution heuristics such as 

myopic best response (a method relying on individual payoff optimizations, employed in previous 

approaches to airline frequency competition, see for example Vaze and Barnhart, 2012a; 2012b) can be 

deployed efficiently to find equilibria, even in large scenarios and networks. In the two player case, we 

can use supermodularity and the uniqueness of first stage Nash equilibria to guarantee the rapid 

convergence of a broad class of adaptive dynamics to Nash equilibria in the first stage game (following 

Milgrom and Roberts, 1990) with our approximated payoff functions. We can leverage concavity, 

submodularity, the polynomial nature of the approximated payoffs, and results from Jensen (2010) to 

demonstrate the convergence of myopic best response for larger numbers of players: 

Proposition 4: An N-player game with quadratic, concave, and submodular payoff functions, belongs to 

the class of generalized quasi-aggregative games (as defined by Jensen, 2010), and the myopic best 

response search heuristic converges to Nash Equilibrium. 

Proof Let the payoff function of player 𝑖 ∈ 𝐾,  for strategy profile s, be 

𝜋𝑖(𝑠) =  𝛾0 +∑𝛾𝑘𝑠𝑘 +∑𝛽𝑘𝑠𝑘
2  +  ∑ 𝛼𝑗,𝑘𝑠𝑗𝑠𝑘    (4)

𝑗,𝑘∈𝐾
 𝑗 ≠ 𝑘 

𝑘∈𝐾𝑘∈𝐾

 

Let 𝜋𝑖 be concave and submodular, such that 𝛽𝑖 < 0 and 𝑎𝑖𝑗 < 0 ∀ 𝑗 ≠ 𝑖 ∈ 𝐾 



Taking 𝑔(𝒔) = 𝜋𝑖(𝒔),  

𝜕𝑔(𝒔)

𝜕𝑠𝑖
= 𝛾𝑖 + 2𝛽𝑖𝑠𝑖 + ∑ 𝛼𝑖,𝑘𝑠𝑘    (5)

𝑘∈𝐾 ≠𝑖 

 

𝜕𝑔(𝒔)

𝜕𝑠𝑖
 can be written as 𝑓𝑖(𝜎𝑖(𝑠−𝑖), 𝑠𝑖), where 𝜎𝑖(𝑠−𝑖) =  ∑ 𝛼𝑖,𝑘𝑠𝑘𝑘∈𝐾 ≠𝑖  and 𝑓𝑖(𝒔) = 𝛾𝑖 + 2𝛽𝑖𝑠𝑖 + 𝜎𝑖(𝑠−𝑖), 

so this game is a generalized quasi-aggregative game as defined by Jensen (2010). As the game is strictly 

submodular, and 𝑓𝑖(𝜎𝑖(𝑠−𝑖), 𝑠𝑖) is strictly decreasing in 𝑠−𝑖, the game is a best reply potential game 

(Jensen 2010, Theorem 1), and  since best reply functions are single-valued (payoffs being strictly 

concave), iterated best-reply dynamics converge to the set of PSNEs (Jensen 2010, Theorem 2).  

In fact, it can be seen that higher order polynomial payoffs with submodular and concave properties fit 

into this a generalized quasi-aggregative framework, provided that interaction terms do not contain 

higher-order products of  𝑠𝑖 (𝑠𝑖
2 for example). This flexible framework may provide future avenues for 

using polynomial payoff approximation function of this type for otherwise analytically intractable games.  

Further results in the theory of games with strategic substitutes by Roy and Sabarwal (2012) demonstrate 

that the convergence of simultaneous best-reply dynamics in such games from the infimum or supremum 

of the strategy set implies a unique equilibrium and the convergence of a broad class of adaptive 

dynamics defined by Milgrom and Roberts (1990) to that equilibrium. While the convergence pf 

sequential best reply dynamics (as demonstrated in Proposition 4) do not necessarily imply this, we can 

explicitly test for convergence such scenarios computationally using our fitted quadratic functions across 

a range of parameters. In numerical tests of simultaneous best response convergence, 2-player quadratic 

payoff games converge, as one would expect from their supermodularity. 3-player games sometimes 

reach cycles, however, suggesting that while sequential best response dynamics will converge for these 

games, other learning dynamics may not.  



 

Figure 3: Fit player 1 profit surface for player 1 vs. player 2’s frequency strategies, 𝛼=1.29, 𝛽=0.0045, N=0.5, and 

unlimited seating. R2   of model is 0.95 

 

The convergence of learning dynamics in games played with our approximated payoff functions is 

reassuring both from an intuitive and a computational perspective. The introduction of a second stage fare 

game has given our payoff functions properties consistent with the convergence of backward-learning 

dynamics, and allows us to think of our airlines making decisions in less-than perfectly rational terms. In 

this since, our model incorporates both a forward looking aspect (approximate consideration of future fare 

decisions) and a backward looking aspect (learning dynamics) in the competitive capacity allocation 

decisions of airlines. From a computational point of view, fast convergence of easily implementable 

learning algorithms and easily solvable iterative payoff maximizations enables efficient solutions, 

experimentation, and calibration of our model when comparing its decision predictions to observed 

behavior. In the next section, we leverage these properties to apply our model to a real-world airline 

network.  

  



 

Airline Network Case Study  

To test the tractability and predictive validity of our model in practice, we apply our game-theoretic 

model to a network of airports in the western United States (SEA, PDX, SFO, SAN, LAX, LAS, PHX, 

OAK, ONT, SMF, and SJC). We estimate the daily non-stop flight frequencies of the four major carriers 

in the network (Alaska Airlines - AS, United Airlines - UA, US Airways - US, Southwest Airlines - WN) 

in the markets in which they are present by computing Nash equilibrium using concave, submodular 

quadratic functions to approximate the payoffs described by equation (3). See Figure 4 for an illustration 

of the networks of each carrier under consideration. 

Quadratic payoff functions are constructed for each valid carrier-market combination depending on the 

number of carriers in the market, based on actual cost and market size data taken from the Bureau of 

Transportation Statistics (BTS) records from the first quarter of 2007. In particular, payoff function 

approximations computed for default parameters and market sizes above were transformed by the costs 

and demands in each particular market, a simple transformation given the functional form of equation (3) 

with respect to cost and market size. Costs and air operating hours for different craft for different carriers 

was taken from the Schedule P-5.2 tables (BTS, 2016c). Data on market size, observed frequencies and 

flight distances was taken from the T100 Segments tables (BTS, 2016a). Data from unidirectional markets 

containing the same airports were averaged, such that, for example PDX-SAN and SAN-PDX were 

treated identically for payoff function generation and frequency estimation purposes, as passenger flows, 

observed frequencies, and other data were generally quite close between differently ordered airport pairs. 

For simplicity, carrier-market combinations with a carrier market-share of less than 10% or average daily 

frequency of less than 0.5 were removed from consideration. Finally, three markets, PDX-SJC, PDX-

SFO, OAK-PDX have been temporarily removed from consideration, as they contain significant daily 

frequencies from both Alaska Airlines (AS) and its regional sister carrier Horizon Air (QX). Taking into 



account such alliances in game-theoretic frequency estimation will require additional modelling 

considerations. In order to account for connecting passengers, market demands for each carrier-segment 

combination were adjusted by the ratio of non-stop passengers in the market + connecting passengers for 

that carrier segment to the total number of passengers flown in that market, such that carriers do not 

compete for the connecting passengers of other carriers. Data for connecting passenger to total passenger 

ratios were taken from DB1B Markets and DB1B Coupons tables (BTS, 2016b).  

    

 

AS UA 

US WN 



Figure 4: Origin-destination markets served by each of the four airlines (UA, AS, US, WN) considered in this case 

study 

We now use the myopic best response heuristic, justified analytically and numerically above, to solve the 

game model, with each airline iteratively optimizing a vector of frequencies in all its markets by summing 

the payoff functions from each of these markets until estimated frequencies converged within a tolerance 

threshold. Frequency choices were constrained by the estimated availability of various aircraft types to 

the airline within the network.  A single aircraft type was assumed for each carrier-segment combination.  

Where appropriate, multiple aircraft types were merged into synthetic aircraft type for the purposes of 

computing constraints, such that each aircraft type appeared in only one synthetic aircraft type, and such 

that operating costs in each market reflected the proportional composition of aircraft used in that market. 

To estimate aircraft availability, it was assumed that carriers generally utilize aircraft close to the limits of 

availability. Thus, the number of aircraft in the network of a type k available to a certain airline a was 

calculated as   

𝐹𝑘,𝑎 =
∑ 2𝑓𝑘,𝑎(𝑏𝑚 + 𝑡)𝑚∈𝑀

18
 

Where M the set of markets where airline a uses craft type k, f is the observed frequency of a on m, t is the 

turnaround time of the aircraft (taken to be 30 minutes in all cases), 𝑏𝑚 is the average block hours of 

airline a flying market m, the factor of 2 accounts for the combined directional markets, and the divisor of 

18 accounts for 18 hours of available flying time in the day. During iterative optimization, these fleet size 

restrictions were applied such that  

∑ 2(𝑏𝑚 + 𝑡)𝑓 ̂𝑘,𝑎,𝑚
𝑚∈𝑀

≤  18𝐹𝑘,𝑎 

Where 𝑓 ̂𝑘,𝑎 is the frequency of being estimated by the model for market m for airline a. During the 

myopic best response, regional carriers and American Airline’s single frequency on the network were left 

fixed in order to control for their possibly idiosyncratic behavior, but these fixed frequencies never-the-

less contributed to the strategic considerations of other carriers.  In all, this left 68 carrier-market 



combinations to estimate frequencies for. As the myopic best response algorithm is run, players allocate 

flight frequencies across their respective networks by solving a constrained quadratic program each best 

response iteration, continuing until convergence. Frequency decision vectors for each player are 

initialized at 0. The model typically converges in 6-7 iterations (each consisting of four best response 

optimizations), and is solved in less than one second using MATLAB quadratic programming functions. 

Figure 5 plots the convergence of the algorithm for two different convergence thresholds.  

In order to calibrate our model, we adjust payoff coefficients to minimize the Mean Absolute Percentage 

Error, or MAPE, between estimated and observed frequencies over the whole system. MAPE is calculated 

as 

𝑀𝐴𝑃𝐸 =  
∑ |𝑓𝑐𝑚 − 𝑓𝑐𝑚|𝑐𝑚∈𝐶𝑀

∑ 𝑓𝑐𝑚𝑐𝑚∈𝐶𝑀
 

Here CM is the set of all market-carrier combinations, 𝑓 is the estimated frequency for the market-carrier 

combination, and 𝑓 is the observed frequency of the market-carrier combination. For the purposes of 

calibration, segment carrier combinations were sorted into four groups: three-player markets, two-player 

markets where both airports were hubs for the carrier, other two-player markets, and monopolistic 

markets. The resulting 11 coefficients of the payoff functions of these groups (the linear, quadratic, and 

interaction term coefficients of frequency for the carrier in question, 3 each for 3-player markets and the 

two 2-player markets, and 2 for monopolistic markets lacking an interaction term), are adjusted 

simultaneously before transformation by cost and market size data for each carrier-segment combination. 

These coefficients were adjusted using a gradient approximation algorithm called SPSA (Simultaneous 

Perturbation Stochastic Approximation, from Spall, 1998) to minimize overall MAPE. Specifically, 

during each iteration of SPSA, a single game was solved, with payoff coefficients perturbed according to 

an approximated gradient with respect to the MAPE loss function.  SPSA was chosen for its ability to 

approximate gradient using only two measurements of the loss function (a measurement of MAPE for one 

convergence of myopic best response), independent of the number of variables being optimized. The 11 



coefficients were initialized using values estimated when fitting quadratic functions of frequency to 

payoff discussed above, using the s-curve market share model with the following parameter values:  

𝛼=1.29, 𝛽=0.0045, N=0.5 and unlimited seating. The game is then run repeatedly until approximate 

convergence of MAPE, over the course of roughly 10,000 iterations. The best performing coefficients are 

then used to estimate frequencies across the network, from which we can evaluate in-sample and out-of-

sample model performance.  

Figure 6 compares actual frequencies (x-axis) and these predicted frequencies (y-axis) in the left panel. 

The 45º blue line represents equivalent observed and predicted frequencies; most segment predictions are 

near this line.  An overall in-sample MAPE of 18.4% is achieved: more concretely, this corresponds to 

49% of absolute prediction errors being less than 1, and 78% being less than 2. Notable outliers were the 

three highest frequency segments, all hub-to-hub airport segments flown by Southwest Airlines (circled in 

Figure 6). Fixing these frequencies, removing them MAPE computation and re-solving the game, we 

achieve an MAPE of 16.7% (Figure 6, right panel), with the corrected misallocations improving 

predictions throughout the model. This suggests that, except for the under-predictions of the highest 

frequencies, the model empirically performs well for most carrier-segments. These frequency prediction 

accuracies can be compared to benchmarks for a single airport, ranging from 14%-20%.  

 

Figure 6: Actual vs. model predicted frequency, with unfixed (left) and fixed (right) high freq. segments,  

 



 

  

Figure 5 displays the convergence of frequency estimates to equilibrium for each of the four airlines under 

consideration using the myopic best response heuristic, with two different convergence thresholds (the sum of all 

differences between estimated frequencies in current and previous iterations).  

 

We can use these same trained coefficients to make frequency predictions out of sample. For example, 

coefficients trained using SPSA on data from Q1 of 2007 can be used to predict frequencies for Q4 of 

2007. As before, we remove from the testing data set markets with allied players and markets with more 

than 3 players (these did not exist in Q1 after market share cut-offs are made, but do exist in Q4), so that 

the same restricted set of parameters can be used to mitigate overfitting. Running the game, we find an 

out of sample testing MAPE of 20.6%, corresponding to 47% of absolute frequency errors being less than 

1, and 73% being less than 2. However, we can leverage our knowledge of training errors when making 

out of sample predictions. By adjusting our testing predictions for a given carrier-segment by the error for 

that carrier-segment in the calibration dataset (simply performing no adjustment to carrier segments not 

extant in the calibration set), we can substantially reduce our out-of-sample MAPE: we find that the 

MAPE in our Q4 2007 predictions falls to just 11.2%.  

A more concrete illustration of this model’s out-of-sample prediction accuracy can be found by looking at 

a new market that arises between Q1 and Q4 of 2007. PDX-SFO is not seen in the calibration data (due to 



the presence of both QX and AS), yet in Q4 is a duopoly market shared by AS and UA. The frequencies 

predicted for this market are a good approximation for observed behavior, with an overall MAPE of 

16.5%, as seen in Table 5: 

PDX-SFO, Q4 2007 

Coefficients calibrated on 

Q1 2007 

Observed Frequency Predicted Frequency Absolute Error 

UA 6.11 7.34 1.22 

AS 3.02 2.74 0.28 

Table 5: Out of sample performance on a new market 

We can take a another view of out-of-sample prediction accuracy by looking at more aggregate measures 

of prediction performance, at the carrier, coefficient category (1 player, 2-player hub-hub, other 2-player, 

3-player), market and airport levels. In our Q4 2007 predictions based on Q1 calibration data, we find 

excellent predictions at all of these levels, both unadjusted and adjusted according to training error as 

described above. With respect to total frequencies allocated by each carrier, we find an MAPE of 2.0%, or 

1.5% adjusted (corresponding to average absolute errors of 2.71 and 2.11 flights respectively). With 

respect to total frequencies allocated within each coefficient category, we find an MAPE of 3.0%, or 2.5% 

adjusted (corresponding to average absolute errors of 4.2 and 3.42 flights respectively). Across the 41 

markets for which estimates were made in the network, we find an MAPE of 14.4%, or 6.3% adjusted 

(corresponding to average absolute errors of 1.95 and 0.86 flights respectively) for the number of daily 

flights in each. Across the 11 airports in the network, we find an MAPE for total flights passing through 

each of 7.8%, or 2.6% adjusted (corresponding to average absolute errors of 7.75 and 2.59 flights 

respectively). Table 6 displays the (rounded) error adjusted predictions and actual airport total daily 

flights for Q4 2007. Predictions at each of these levels of aggregation may be of interested for airlines, 

airports and other policy makers.   

 

 

 



 

Airport Observed Flights Predicted Flights 

LAX 128 132 

SJC 64 61 

LAS 167 168 

SAN 108 110 

SMF 71 70 

SEA 105 104 

PDX 41 43 

SFO 92 99 

ONT 61 62 

PHX 159 153 

OAK 88 85 

Table 6: Out of sample predictions of daily flights deployed at all airports in network, Q4 2007. Calibrated on Q1 

2007 data.  

In order to examine the predictive accuracy of our model more broadly, we can examine in-sample and 

out of-sample prediction across years and for varying degrees of look ahead in prediction. In order to do 

this, we calibrate our 11 coefficients on every quarter from 2007 to 2014, giving us 32 sets of coefficients, 

and using these coefficients to predict frequencies at every quarter after each of these calibration dates. In 

this expanded set of data, we include new major carriers and new hubs in the network as appropriate for 

the date in question.  

Examining the unadjusted MAPE at varies look-ahead values (i.e. number of quarters ahead the prediction 

is made with respect to the quarter on which the data is calibrated), we find an almost monotonic increase 

in median error. Figure 7 shows MAPE for each possible calibration-validation combination (red circles), 

and the median MAPE for that look ahead value in blue (with error bars at one standard deviation). 

Median MAPE remains below 25% for 15 quarters out, suggesting reasonable predictive accuracy in the 

short and medium term. However, by adjusting predictions by calibration errors in the manner described 

above, we can achieve significant improvements in MAPE. Median MAPE in this case remains below 

15% for several quarters into the future, though a similar overall increase in median MAPE is seen 

(Figure 8). We can also look at median MAPE and average absolute error for new markets (Figure 9 and 

10, respectively). i.e. markets not seen in the calibration data. Median MAPE remains close to 20% for 

several quarters in to the future, suggesting that the new market displayed in Table 5 is not a highly 



abnormal short term prediction, and providing further support for the short-to-medium term predictive 

accuracy of the model. 

 

Figure 7: Unadjusted MAPE for varying lookahead 

 

 

 
Figure 8: Calibration error-adjusted MAPE for varying lookahead 



 
Figure 9: MAPE for new markets for varying lookahead 

 

 
Figure 10: Average absolute error for new markets for varying lookahead 

 

 

Conclusions 

This study investigates a two-stage frequency-fare game-theoretic model of airline competition which is 

behaviorally consistent with the sequential nature of airline capacity and fare decisions.  For simple cases, 

the analytical qualities of this model indicate well behaved and tractable games, with unique equilibria 



and convergence properties. Using polynomial payoff function approximations, these properties can be 

shown numerically to extend to more realistic formulations of the game. In practice, when applied to a 

real airline network, the model converges quickly and generates daily frequency predictions that closely 

approximate actual airline decisions, both in sample and out of sample within a short-to-medium term 

time horizon.  

We believe that our model presents multiple avenues for application and future research. To the best of 

our knowledge, this is the first study to investigate the favorable properties discussed within the context 

of a two-stage model of airline competition, providing analytical, computational, and empirical results for 

a game-theoretic approach that has received limited attention in the airline competition literature. We 

hope that our results presented here can serve as a foundation for a further research into sequential models 

of airline decision making under competition. Furthermore, the predictive performance of our model on 

real world data suggests that refinements of the model could serve as a scenario analysis tool to aid in 

planning, forecasting and policy-making decision support.  The tractability of this model and the 

flexibility with which different scenarios can be tested suggest its potential for rapid and interpretable 

experimentation in even large-scale airline networks. Here we have considered a relatively simple model 

of airline competition, without taking into account factors such as market segmentation between business 

and leisure passengers, passenger loyalty, behavioral differences between airlines and between the non-

frequency-fare services they provide, and characteristics of markets beyond cost, observed passenger 

flow, and hub presence. The fact that our simple model provides a good approximation of airline 

frequency allocation suggestions that more flexible parameterizations in calibration and prediction could 

be promising avenues for practitioners.  

More broadly, we believe that the general approach presented in this paper could be usefully employed in 

other domains of applied game theory. Here we have presented a theory-motivated framework for 

informing a game-theoretic predictive model with data. Game-theoretic models often become intractable 

for analytical exploration as they are extended to increasingly realistic scenarios. Polynomial 



approximations of profit functions may provide a convenient method for extending the analytical results 

of simple game theoretic models to more realistic scenarios, and provide a bridge from theoretical results 

to models that can be easily calibrated using increasingly available data on strategic behavior. The 

polynomial approximation approach may provide simple ways to evaluate the properties of otherwise 

inscrutable models by providing simple windows in properties such as sub/supermodularity and 

generalizations of aggregative games. We hope that such an approach, within the two-stage framework in 

particular, could be extended to other applied domains where capacity and pricing decisions are made on 

different time scales. Earlier work has explored such two-stage capacity and price decisions in models 

motivated by the telecommunications industry (Acemoglu, Bimpikis, and Ozdaglar, 2006): it is possible 

that parallels with such domains and the work here could be fruitfully explore in the future.   

 

Appendix I: Full Proofs for s-curve and schedule delay models  

Proof of Concavity – s-curve model  

Here we give a proof that in a market with 2 competing airlines, all nonstop flights, infinite seating 

capacity, and the absence of a no-fly option, profit πi  for each airline i ϵ {1, 2}  is a concave function of 

the frequency of airline i in that market. With fi as the frequency and pi as the fare price of each airline and 

with α and β as constants, the market share for airline 1 is given by: 

𝑀𝑆1 =
𝑒α 𝑙𝑛(𝑓1)− 𝛽𝑝1

𝑒α𝑙𝑛(𝑓1)− 𝛽𝑝1 + 𝑒α𝑙𝑛(𝑓2)− 𝛽𝑝2
 

With M as market size, and c as the operating cost of a flight, the profit of airline 1 can then be written as 

π1 = 𝑀𝑝1 (
𝑒α 𝑙𝑛(𝑓1)− 𝛽𝑝1

𝑒α𝑙𝑛(𝑓1)− 𝛽𝑝1 + 𝑒α𝑙𝑛(𝑓2)− 𝛽𝑝2
) − 𝑐𝑓1     (𝟏) 

Differentiating, and putting 𝑀𝑆1 in terms of its complementary market share as 1 - 𝑀𝑆2, 



𝜕π1
𝜕𝑝1

=  𝑀 (
𝑒α 𝑙𝑛(𝑓1)− 𝛽𝑝1

𝑒α𝑙𝑛(𝑓1)− 𝛽𝑝1 + 𝑒α𝑙𝑛(𝑓2)− 𝛽𝑝2
) −  𝑀𝑝1

𝜕

𝜕𝑝1
(1 −

𝑒α𝑙𝑛(𝑓2)− 𝛽𝑝2 

𝑒α𝑙𝑛(𝑓1)− 𝛽𝑝1 + 𝑒α𝑙𝑛(𝑓2)− 𝛽𝑝2
 ) 

 

𝜕π1
𝜕𝑝1

=  𝑀 (
𝑒α𝑙𝑛(𝑓1)− 𝛽𝑝1

𝑒α𝑙𝑛(𝑓1)− 𝛽𝑝1 + 𝑒α𝑙𝑛(𝑓2)− 𝛽𝑝2
) −  𝑀𝑝1𝛽 (

𝑒α𝑙𝑛(𝑓1)− 𝛽𝑝1  𝑒α 𝑙𝑛(𝑓2)− 𝛽𝑝2

(𝑒α𝑙𝑛(𝑓1)− 𝛽𝑝1 + 𝑒α𝑙𝑛(𝑓2)− 𝛽𝑝2)2
) 

At 
𝜕π1

𝜕𝑝1
 = 0,  

𝑀(
𝑒α𝑙𝑛(𝑓1)− 𝛽𝑝1

𝑒α𝑙𝑛(𝑓1)− 𝛽𝑝1 + 𝑒α𝑙𝑛(𝑓2)− 𝛽𝑝2
) =  𝑀𝑝1𝛽 (

𝑒α𝑙𝑛(𝑓1)− 𝛽𝑝1  𝑒α 𝑙𝑛(𝑓2)− 𝛽𝑝2

(𝑒α𝑙𝑛(𝑓1)− 𝛽𝑝1 + 𝑒α𝑙𝑛(𝑓2)− 𝛽𝑝2)2
) 

 (
 𝑒α𝑙𝑛(𝑓2)− 𝛽𝑝2

𝑒α 𝑙𝑛(𝑓1)− 𝛽𝑝1 + 𝑒α𝑙𝑛(𝑓2)− 𝛽𝑝2
) =

1

𝛽𝑝1
=  𝑀𝑆2    (𝟐𝒂) 

Repeating the process for π2, we also have 

 (
 𝑒α𝑙𝑛(𝑓1)− 𝛽𝑝1

𝑒α𝑙𝑛(𝑓1)− 𝛽𝑝1 + 𝑒α𝑙𝑛(𝑓2)− 𝛽𝑝2
) =

1

𝛽𝑝2
=  𝑀𝑆1    (𝟐𝒃) 

Additionally, since market shares are complementary,  

1

𝛽𝑝1
+

1

𝛽𝑝2
=  1 ⇒   

1

𝑝1
+
1

𝑝2
=  𝛽 ⇒   𝑝1 + 𝑝2 =  𝛽𝑝1𝑝2   

 

𝑝1
𝑝2
=  𝛽𝑝1 − 1     (𝟑)  

Plugging (𝟐𝒃) into (𝟏), we have 

π1 =
𝑀𝑝1
𝛽𝑝2

− 𝑐𝑓1      

Substituting (𝟑) into the above, 



π1 =
𝑀

𝛽
(𝛽𝑝1 − 1) − 𝑐𝑓1  =  𝑀𝑝1 − 

𝑀

𝛽
− 𝑐𝑓1     (𝟒)  

Thus,  𝑠𝑔𝑛 (
𝜕2π1

𝜕𝑓1
2) =  𝑠𝑔𝑛 (

𝜕2p1

𝜕𝑓1
2) (𝟓)  

 

Dividing (𝟐𝒃) by (𝟐𝒂), we also get  

(
 𝑒α𝑙𝑛(𝑓1)− 𝛽𝑝1

 𝑒α𝑙𝑛(𝑓2)− 𝛽𝑝2
) = 𝑒α(𝑙𝑛(𝑓1)−𝑙𝑛(𝑓2))− 𝛽(𝑝1−𝑝2) =

𝑝1
𝑝2

 

Taking the log of both sides and substituting 
𝑝1

𝑝2
=  𝛽𝑝1 − 1 from  (𝟑),   

α 𝑙𝑛 (
𝑓1
𝑓2
) =  𝛽(𝑝1 − 𝑝2) + 𝑙𝑛(𝛽𝑝1 − 1) 

Substituting 
𝑝1

𝛽𝑝1−1
= 𝑝2 from (𝟑),  

α 𝑙𝑛 (
𝑓1
𝑓2
) =  𝛽 (𝑝1 −

𝑝1
𝛽𝑝1 − 1

) + 𝑙𝑛(𝛽𝑝1 − 1) 

α 𝑙𝑛 (
𝑓1
𝑓2
) =  

𝛽𝑝1
𝛽𝑝1 − 1

(𝛽𝑝1 − 2) + 𝑙𝑛(𝛽𝑝1 − 1)    (𝟔) 

Differentiating both sides with respect to 𝑓1 ,  

α (
𝑓2
𝑓1
)
1

𝑓2
=
𝜕𝑝1
𝜕𝑓1

𝜕

𝜕𝑝1
(
𝛽𝑝1

𝛽𝑝1 − 1
(𝛽𝑝1 − 2) + 𝑙𝑛(𝛽𝑝1 − 1) )  

α

𝑓1
= (

𝛽2𝑝1
(𝛽𝑝1 − 1)

2 
+  𝛽)

𝜕𝑝1
𝜕𝑓1

 

α

𝛽

1

𝑓1
= (

𝛽𝑝1
(𝛽𝑝1 − 1)

2 
+  1)

𝜕𝑝1
𝜕𝑓1

    (𝟕𝒂) 

  



𝜕𝑝1
𝜕𝑓1

 =

α
𝛽
1
𝑓1

(
𝛽𝑝1

(𝛽𝑝1 − 1)
2 +  1)

    (𝟕𝒃) 

 

By (𝟑), 𝛽𝑝1 greater than 1, as the price ratio must be positive.  In equation (𝟕𝒂) above, the left-hand side 

and the multiplicands on the right-hand side are positive. Additionally, differentiating the left 

multiplicand of the right hand side of (𝟕𝒂) with respect to 𝑝1, and with 𝛽𝑝1 greater than 1, we get 

𝜕

𝜕𝑝1
(

𝛽𝑝1
(𝛽𝑝1 − 1)

2 
+  1) = 𝛽

1 − 𝛽2𝑝1
2

(𝛽𝑝1 − 1)
4 
< 0 

Differentiating both sides of  (𝟕𝒂) with respect to 𝑓1 a second time, we get  

−
α

𝛽

1

𝑓1
2 =

𝜕

𝜕𝑓1
[(

𝛽𝑝1
(𝛽𝑝1 − 1)

2 
+  1)

𝜕𝑝1
𝜕𝑓1

]     

−
α

𝛽

1

𝑓1
2 =

𝜕2𝑝1

𝜕𝑓1
2 (

𝛽𝑝1
(𝛽𝑝1 − 1)

2 
+  1) + 𝛽 (

1 − 𝛽2𝑝1
2

(𝛽𝑝1 − 1)
4 )(

𝜕𝑝1
𝜕𝑓1

)
2

 

We can rearrange (𝟕𝒂) as  
𝜕𝑝1

𝜕𝑓1
=
 α

𝛽

1

𝑓1
(

(𝛽𝑝1−1)
2 

𝛽2𝑝1
2−𝛽𝑝1+1 

), and plugging this expression into the equation 

above, we have 

−
α

𝛽𝑓1
2 =

𝜕2𝑝1

𝜕𝑓1
2 (

𝛽𝑝1
(𝛽𝑝1 − 1)

2 
+  1) + 𝛽 (

1 − 𝛽2𝑝1
2

(𝛽𝑝1 − 1)
4 )

 α2

𝛽2𝑓1
2 (

(𝛽𝑝1 − 1)
4 

(𝛽2𝑝1
2 − 𝛽𝑝1 + 1) 

2) 

−
α

𝛽𝑓1
2 =

𝜕2𝑝1

𝜕𝑓1
2 (

𝛽𝑝1
(𝛽𝑝1 − 1)

2 
+  1) + (

1 − 𝛽2𝑝1
2

(𝛽2𝑝1
2 − 𝛽𝑝1 + 1) 

2)
 α2

𝛽𝑓1
2 

−
α

𝛽𝑓1
2 − (

1 − 𝛽2𝑝1
2

(𝛽2𝑝1
2 − 𝛽𝑝1 + 1) 

2)
 α2

𝛽𝑓1
2 =

𝜕2𝑝1

𝜕𝑓1
2 (

𝛽𝑝1
(𝛽𝑝1 − 1)

2 
+  1) 



−
α

𝛽𝑓1
2

(
𝛽𝑝1

(𝛽𝑝1 − 1)
2 +  1)⏟            

𝐴

[1 +  α(
1 − 𝛽2𝑝1

2

(𝛽2𝑝1
2 − 𝛽𝑝1 + 1) 

2)
⏟              

𝐵

] =
𝜕2𝑝1

𝜕𝑓1
2  (𝟖) 

The expression to the left of the square brackets in (𝟖) above (labeled A) is negative for all values of 

𝛽𝑝1 > 1, which will be true by (𝟑). Expression B in (𝟖)  has the form (
1−𝑥2

(𝑥2−𝑥+1) 2
), which has a global 

minimum of −0.408894  at 𝑥 = 𝛽𝑝1 = 1.53209. Thus, for any α < 2.4456 (an extreme value for this 

parameter),  

𝜕2𝑝1

𝜕𝑓1
2 < 0 

From  (𝟓), this implies 

𝜕2𝜋1

𝜕𝑓1
2 < 0 

The profit function of player 1 is thus concave with respect to the frequency of player 1.  

 

Proof of Unique Pure Strategy Equilibrium in Second Stage – s-curve model 

From (𝟔), we have  

α 𝑙𝑛 (
𝑓1
𝑓2
) =  

𝛽𝑝1
𝛽𝑝1 − 1

(𝛽𝑝1 − 2) + 𝑙𝑛(𝛽𝑝1 − 1)     

α 𝑙𝑛 (
𝑓1
𝑓2
) =  𝛽𝑝1 (1 −

1

𝛽𝑝1 − 1
) + 𝑙𝑛(𝛽𝑝1 − 1)     

 

Taking the right hand side of the equation to be  𝐹(𝑝1) and differentiating with respect to 𝑝1, we have  



𝜕𝐹(𝑓1, 𝑓2) 

𝜕𝛽𝑝1
=
(𝛽𝑝1)

2 − 2𝛽𝑝1 + 2

(𝛽𝑝1 − 1)
2

+
1

𝛽𝑝1 − 1
 

𝛽𝑝1 > 1 by (𝟑), and  in the above expression,  

𝜕 𝐹(𝑝1)

𝜕𝛽𝑝1
> 0 ∀ 𝛽𝑝1 𝜖 (1,∞]    (𝟗) 

𝛽 is a positive constant, so is 𝐹(𝑝1)  is monotonically increasing on 𝑝1 with 𝛽𝑝1 𝜖 (1,∞]. 

In addition,  

lim
𝛽𝑝1→∞

 𝐹(𝑝1) = ∞ 

Since lim
𝛽𝑝1→∞

 𝑙𝑛(𝛽𝑝1 − 1)    = ∞, and using L’Hopital’s rule,  

lim
𝛽𝑝1→∞

 
𝛽𝑝1

𝛽𝑝1 − 1
(𝛽𝑝1 − 2) =  lim

𝛽𝑝1→∞

2𝛽𝑝1 − 2

1
= ∞ 

Also,  

lim
𝛽𝑝1→1

+
 𝐹(𝑝1) = −∞ 

Since lim
𝛽𝑝1→1

+
 𝑙𝑛(𝛽𝑝1 − 1)    = −∞, and  

lim
𝛽𝑝1→1

+
 
𝛽𝑝1

𝛽𝑝1 − 1
(𝛽𝑝1 − 2) =  lim

𝛽𝑝1→1
+
[(𝛽𝑝1)

2 − 2𝛽𝑝1] lim
𝛽𝑝1→1

+

1

𝛽𝑝1 − 1
= −∞ 

Thus, taking the right hand side of  (𝟔) to be 𝐺(𝑓1, 𝑓2),  for any {𝑓1, 𝑓2}, there exists an 𝐹−1 such that 

𝑝1 =  𝐹
−1(𝐺(𝑓1, 𝑓2)) with  𝛽𝑝1 > 1.  By symmetry, the same argument applies for 𝑝2. Thus, for the 

second stage game, there exists a unique fare vector (𝑝1
∗,  𝑝2

∗).  

  

 



Proof of Submodularity – s-curve model 

From (𝟕𝒃), we have 

𝜕𝑝1
𝜕𝑓1

 =

α
𝛽
1
𝑓1

(
𝛽𝑝1

(𝛽𝑝1 − 1)
2 +  1)

   

Differentiating with respect to 𝑓2, we get 

𝜕2𝑝1
𝜕𝑓1𝜕𝑓2

=
−
α
𝛽
1
𝑓1

(
𝛽𝑝1

(𝛽𝑝1 − 1)
2 +  1)

2

𝜕

𝜕𝑓2
[

𝛽𝑝1
(𝛽𝑝1 − 1)

2 ] =
−
α
𝑓1

(
𝛽𝑝1

(𝛽𝑝1 − 1)
2 +  1)

2 (
1 − 𝛽2𝑝1

2

(𝛽𝑝1 − 1)
4 )
𝜕𝑝1
𝜕𝑓2

 

 

𝜕2𝑝1
𝜕𝑓1𝜕𝑓2

=
−
α
𝑓1

(𝛽𝑝1 + (𝛽𝑝1 − 1)
2 )2

[(1 − 𝛽2𝑝1
2)
𝜕𝑝1
𝜕𝑓2

]    (𝟏𝟓) 

On the right-hand side of (𝟏𝟓), the left multiplicand is < 0 as α and 𝑓1 are both positive. Now we must 

check the sign of (1 − 𝛽2𝑝1
2)
𝜕𝑝1

𝜕𝑓2
. From (𝟔), we have 

α 𝑙𝑛 (
𝑓1
𝑓2
) =  

𝛽𝑝1
𝛽𝑝1 − 1

(𝛽𝑝1 − 2) + 𝑙𝑛(𝛽𝑝1 − 1)     

Differentiating both sides with respect to 𝑓2 ,  

−α(
𝑓2
𝑓1
)
𝑓1

𝑓2
2 =

𝜕𝑝1
𝜕𝑓2

𝜕

𝜕𝑝1
(
𝛽𝑝1

𝛽𝑝1 − 1
(𝛽𝑝1 − 2) + 𝑙𝑛(𝛽𝑝1 − 1) )  

−
α

𝑓2
= 𝛽

𝜕𝑝1
𝜕𝑓2

(
𝛽𝑝1

(𝛽𝑝1 − 1)
2 
+  1)    (𝟏𝟔) 

Thus, in (𝟏𝟔) above, 
𝜕𝑝1

𝜕𝑓2
< 0, so (1 − 𝛽2𝑝1

2)
𝜕𝑝1

𝜕𝑓2
< 0  if 𝛽𝑝1 > 1. This is the case at equilibrium, so 

from (𝟏𝟓) we have 



𝜕2𝑝1
𝜕𝑓1𝜕𝑓2

< 0    (𝟏𝟕) 

 

From (𝟒), we have 

π1 =  𝑀𝑝1 − 
𝑀

𝛽
− 𝑐𝑓1      

So (𝟏𝟕) also implies 

𝜕2𝜋1
𝜕𝑓1𝜕𝑓2

< 0    (𝟏𝟖) 

 

 

Proof of Concavity – schedule delay model 

 

Here we give a proof that in a market with 2 competing airlines, all nonstop flights, infinite seating 

capacity, and the absence of a no-fly option, profit πi  for each airline i ϵ {1, 2}  is a concave function of 

the frequency of airline i in that market. With fi as the frequency and pi as the fare price of each airline and 

with m,  φ, and β as positive parameters, the market share for airline 1 is given by: 

𝑀𝑆1 =
𝑒−φ𝑓1

−𝑚− 𝛽𝑝1

𝑒−φ𝑓1
−𝑚− 𝛽𝑝1 + 𝑒−φ𝑓2

−𝑚− 𝛽𝑝2
 

With M as market size, and c as the operating cost of a flight, the profit of airline 1 can then be written as 

π1 = 𝑀𝑝1 (
𝑒−φ𝑓1

−𝑚− 𝛽𝑝1

𝑒−φ𝑓1
−𝑚− 𝛽𝑝1 + 𝑒−φ𝑓2

−𝑚− 𝛽𝑝2
) − 𝑐𝑓1     (𝟏) 

Differentiating, and putting 𝑀𝑆1 in terms of its complementary market share as 1 - 𝑀𝑆2, 



𝜕π1
𝜕𝑝1

=  𝑀(
𝑒−φ𝑓1

−𝑚− 𝛽𝑝1

𝑒−φ𝑓1
−𝑚− 𝛽𝑝1 + 𝑒−φ𝑓2

−𝑚− 𝛽𝑝2
) −  𝑀𝑝1

𝜕

𝜕𝑝1
(1 −

𝑒−φ𝑓2
−𝑚− 𝛽𝑝2

𝑒−φ𝑓1
−𝑚− 𝛽𝑝1 + 𝑒−φ𝑓2

−𝑚− 𝛽𝑝2
 ) 

 

𝜕π1
𝜕𝑝1

=  𝑀 (
𝑒−φ𝑓1

−𝑚− 𝛽𝑝1

𝑒−φ𝑓1
−𝑚− 𝛽𝑝1 + 𝑒−φ𝑓2

−𝑚− 𝛽𝑝2
) −  𝑀𝑝1𝛽 (

𝑒−φ𝑓1
−𝑚− 𝛽𝑝1𝑒−φ𝑓2

−𝑚− 𝛽𝑝2

(𝑒−φ𝑓1
−𝑚− 𝛽𝑝1 + 𝑒−φ𝑓2

−𝑚− 𝛽𝑝2)
2) 

At 
𝜕π1

𝜕𝑝1
 = 0,  

𝑀(
𝑒−φ𝑓1

−𝑚− 𝛽𝑝1

𝑒−φ𝑓1
−𝑚− 𝛽𝑝1 + 𝑒−φ𝑓2

−𝑚− 𝛽𝑝2
) =  𝑀𝑝1𝛽 (

𝑒−φ𝑓1
−𝑚− 𝛽𝑝1𝑒−φ𝑓2

−𝑚− 𝛽𝑝2

(𝑒−φ𝑓1
−𝑚− 𝛽𝑝1 + 𝑒−φ𝑓2

−𝑚− 𝛽𝑝2)
2) 

 (
𝑒−φ𝑓2

−𝑚− 𝛽𝑝2

𝑒−φ𝑓1
−𝑚− 𝛽𝑝1 + 𝑒−φ𝑓2

−𝑚− 𝛽𝑝2
) =

1

𝛽𝑝1
=  𝑀𝑆2    (𝟐𝒂) 

Repeating this process for π2, we also have 

 (
𝑒−φ𝑓1

−𝑚− 𝛽𝑝1

𝑒−φ𝑓1
−𝑚− 𝛽𝑝1 + 𝑒−φ𝑓2

−𝑚− 𝛽𝑝2
) =

1

𝛽𝑝2
=  𝑀𝑆1    (𝟐𝒃) 

Additionally, since market shares are complementary,  

1

𝛽𝑝1
+

1

𝛽𝑝2
=  1 ⇒   

1

𝑝1
+
1

𝑝2
=  𝛽 ⇒   𝑝1 + 𝑝2 =  𝛽𝑝1𝑝2   

 

𝑝1
𝑝2
=  𝛽𝑝1 − 1     (𝟑)  

Plugging (𝟐𝒃) into (𝟏), we have 

π1 =
𝑀𝑝1
𝛽𝑝2

− 𝑐𝑓1      

Substituting (𝟑) into the above, 



π1 = 𝑀(𝛽𝑝1 − 1) − 𝑐𝑓1  =  𝑀𝑝1 − 
𝑀

𝛽
− 𝑐𝑓1     (𝟒)  

Thus,  𝑠𝑔𝑛 (
𝜕2π1

𝜕𝑓1
2) =  𝑠𝑔𝑛 (

𝜕2p1

𝜕𝑓1
2) (𝟓)  

 

Dividing (𝟐𝒃) by (𝟐𝒂), we also get  

(
 𝑒−φ𝑓1

−𝑚− 𝛽𝑝1

 𝑒−φ𝑓2
−𝑚− 𝛽𝑝2

) = 𝑒−φ(𝑓1−𝑓2)− 𝛽(𝑝1−𝑝2) =
𝑝1
𝑝2

 

Taking the log of both sides,  

𝑙𝑛 (
𝑝1
𝑝2
) =  −φ(𝑓1 − 𝑓2) −  𝛽(𝑝1 − 𝑝2) 

Substituting 
𝑝1

𝑝2
=  𝛽𝑝1 − 1 from  (𝟑),   

−φ(𝑓1
−𝑚 − 𝑓2

−𝑚) =  𝛽(𝑝1 − 𝑝2) + 𝑙𝑛(𝛽𝑝1 − 1) 

Substituting 
𝑝1

𝛽𝑝1−1
= 𝑝2,  

−φ(𝑓1
−𝑚 − 𝑓2

−𝑚) =  𝛽 (𝑝1 − 
𝑝1

𝛽𝑝1 − 1
) + 𝑙𝑛(𝛽𝑝1 − 1) 

−φ(𝑓1
−𝑚 − 𝑓2

−𝑚) =  
𝛽𝑝1

𝛽𝑝1 − 1
(𝛽𝑝1 − 2) + 𝑙𝑛(𝛽𝑝1 − 1)    (𝟔) 

Differentiating both sides with respect to 𝑓1 ,  

φ𝑚𝑓1
−(𝑚+1) =

𝜕𝑝1
𝜕𝑓1

𝜕

𝜕𝑝1
(
𝛽𝑝1

𝛽𝑝1 − 1
(𝛽𝑝1 − 2) + 𝑙𝑛(𝛽𝑝1 − 1) )  

φ𝑚𝑓1
−(𝑚+1) = (

𝛽2𝑝1
(𝛽𝑝1 − 1)

2 
+  𝛽)

𝜕𝑝1
𝜕𝑓1

 



φ𝑚𝑓1
−(𝑚+1)

𝛽
= (

𝛽𝑝1
(𝛽𝑝1 − 1)

2 
+  1)

𝜕𝑝1
𝜕𝑓1

    (𝟕𝒂) 

  

𝜕𝑝1
𝜕𝑓1

 =

φ𝑚
𝛽
𝑓1
−(𝑚+1)

(
𝛽𝑝1

(𝛽𝑝1 − 1)
2 +  1)

    (𝟕𝒃) 

In equation (𝟕𝒂) above, the left-hand side and the multiplicands on the right-hand side are positive. 

Additionally, differentiating the left multiplicand of the right hand side of (𝟕𝒂) with respect to 𝑝1, and 

with 𝛽𝑝1 greater than 1 (which will be the case in the ranges considered), we get 

𝜕

𝜕𝑝1
(

𝛽𝑝1
(𝛽𝑝1 − 1)

2 
+  1) =

1 − 𝛽2𝑝1
2

(𝛽𝑝1 − 1)
4 
< 0 

Differentiating both sides of  (𝟕𝒂) with respect to 𝑓1 a second time, we get  

−φ𝑚(𝑚 + 1)𝑓1
−(𝑚+2)

𝛽
=
𝜕

𝜕𝑓1
[(

𝛽𝑝1
(𝛽𝑝1 − 1)

2 
+  1)

𝜕𝑝1
𝜕𝑓1

]     

−φ𝑚(𝑚 + 1)𝑓1
−(𝑚+2)

𝛽
=
𝜕2𝑝1

𝜕𝑓1
2 (

𝛽𝑝1
(𝛽𝑝1 − 1)

2 
+  1) + 𝛽 (

1 − 𝛽2𝑝1
2

(𝛽𝑝1 − 1)
4 )(

𝜕𝑝1
𝜕𝑓1

)
2

 

We can rearrange (𝟕𝒂) as  
𝜕𝑝1

𝜕𝑓1
=
φ𝑚

𝛽
𝑓1
−(𝑚+1) (

(𝛽𝑝1−1)
2 

𝛽2𝑝1
2−𝛽𝑝1+1 

), and plugging this expression into the 

equation above, we have  

−φ𝑚(𝑚 + 1)𝑓1
−(𝑚+2)

𝛽

=
𝜕2𝑝1

𝜕𝑓1
2 (

𝛽𝑝1
(𝛽𝑝1 − 1)

2 
+  1) + 𝛽 (

1 − 𝛽2𝑝1
2

(𝛽𝑝1 − 1)
4 )
φ2𝑚2

𝛽2
𝑓1
−2(𝑚+1) (

(𝛽𝑝1 − 1)
4 

(𝛽2𝑝1
2 − 𝛽𝑝1 + 1)

2 
) 

−φ𝑚(𝑚 + 1)𝑓1
−(𝑚+2)

𝛽
=
𝜕2𝑝1

𝜕𝑓1
2 (

𝛽𝑝1
(𝛽𝑝1 − 1)

2 
+  1) + (

1 − 𝛽2𝑝1
2

(𝛽2𝑝1
2 − 𝛽𝑝1 + 1)

2)
φ2𝑚2

𝛽
𝑓1
−2(𝑚+1)

 



−φ𝑚(𝑚 + 1)𝑓1
−(𝑚+2)

𝛽
− (

1 − 𝛽2𝑝1
2

(𝛽2𝑝1
2 − 𝛽𝑝1 + 1)

2)
φ2𝑚2

𝛽
𝑓1
−2(𝑚+1) =

𝜕2𝑝1

𝜕𝑓1
2 (

𝛽𝑝1
(𝛽𝑝1 − 1)

2 
+  1) 

−φ𝑚(𝑚 + 1)𝑓1
−𝑚−2

𝛽
− (

1 − 𝛽2𝑝1
2

(𝛽2𝑝1
2 − 𝛽𝑝1 + 1)

2)
φ2𝑚2

𝛽
𝑓1
−2𝑚−2 =

𝜕2𝑝1

𝜕𝑓1
2 (

𝛽𝑝1
(𝛽𝑝1 − 1)

2 
+  1) 

−φ𝑚(𝑚 + 1)𝑓1
−𝑚−2

𝛽
[1 + (

1 − 𝛽2𝑝1
2

(𝛽2𝑝1
2 − 𝛽𝑝1 + 1)

2)
φ𝑚2

𝑚(𝑚 + 1)
𝑓1
−2𝑚−2+𝑚+2] =

𝜕2𝑝1

𝜕𝑓1
2 (

𝛽𝑝1
(𝛽𝑝1 − 1)

2 
+  1) 

 

−φ𝑚(𝑚 + 1)𝑓1
−𝑚−2

𝛽 (
𝛽𝑝1

(𝛽𝑝1 − 1)
2 +  1)⏟              

𝐴

[1 +
φ𝑚2

𝑚(𝑚 + 1)
𝑓1
−𝑚 (

1 − 𝛽2𝑝1
2

(𝛽2𝑝1
2 − 𝛽𝑝1 + 1) 

2)
⏟              

𝐵

] =
𝜕2𝑝1

𝜕𝑓1
2  

The expression to the left of the square brackets in (𝟖) above (labeled A) is negative for all values of 

𝛽𝑝1 > 1, which will be true by (𝟑). Expression B in (𝟖)  has the form (
1−𝑥2

(𝑥2−𝑥+1) 2
), which has a global 

minimum of −0.408894  at 𝑥 = 𝛽𝑝1 = 1.53209, as in the s-curve model.  Let 𝐾 =
φ𝑚2

𝑚(𝑚+1)
𝑓1
−𝑚

.  If 𝐾 is 

< 2.4456,  
𝜕2𝑝1

𝜕𝑓1
2 < 0 and from  (𝟓), this implies 

𝜕2𝜋1

𝜕𝑓1
2 < 0, and thus that the profit of player 1 function is 

concave with respect to the frequency strategy of player 1.  

Using φ = 5.1 estimated by Hansen and Liu (2015), and any value of 𝑚 less than 0.97, the expression 𝐾 

is < 2.4456  for all values of 𝑓1 1 or greater. 𝑚 has been cited in literature as 0.456 by Douglas and 

Miller (1974). Abrahams (1983) takes 𝑚 = 1, in which case concavity holds for all values of 𝑓1 > 1.043. 

Plot below displays  𝐾 for values of player 1 frequency, for different values of 𝑚 and φ = 5.1. The 

horizontal line represents the value of 𝐾 below which concavity of player 1’s profit function holds. 

 



 

 

Proof of Unique Pure Strategy Equilibrium in Second Stage – schedule delay model 

From (𝟔), we have  

−φ(𝑓1
−𝑚 − 𝑓2

−𝑚) =   
𝛽𝑝1

𝛽𝑝1 − 1
(𝛽𝑝1 − 2) + 𝑙𝑛(𝛽𝑝1 − 1)     

−φ(𝑓1
−𝑚 − 𝑓2

−𝑚) =   𝛽𝑝1 (1 −
1

𝛽𝑝1 − 1
) + 𝑙𝑛(𝛽𝑝1 − 1)     

 

Taking the right hand side of the equation to be  𝐹(𝑝1) and differentiating with respect to 𝑝1, we have  

𝜕𝐹(𝑓1, 𝑓2) 

𝜕𝛽𝑝1
=
(𝛽𝑝1)

2 − 2𝛽𝑝1 + 2

(𝛽𝑝1 − 1)
2

+
1

𝛽𝑝1 − 1
 



𝛽𝑝1 > 1 by (𝟑), and  in the above expression,  

𝜕 𝐹(𝑝1)

𝜕𝛽𝑝1
> 0 ∀ 𝛽𝑝1 𝜖 (1,∞]    (𝟗) 

𝛽 is a positive constant, so is 𝐹(𝑝1)  is monotonically increasing on 𝑝1 with 𝛽𝑝1 𝜖 (1,∞]. 

In addition,  

lim
𝛽𝑝1→∞

 𝐹(𝑝1) = ∞ 

Since lim
𝛽𝑝1→∞

 𝑙𝑛(𝛽𝑝1 − 1)    = ∞, and using L’Hopital’s rule,  

lim
𝛽𝑝1→∞

 
𝛽𝑝1

𝛽𝑝1 − 1
(𝛽𝑝1 − 2) =  lim

𝛽𝑝1→∞

2𝛽𝑝1 − 2

1
= ∞ 

Also,  

lim
𝛽𝑝1→1

+
 𝐹(𝑝1) = −∞ 

Since lim
𝛽𝑝1→1

+
 𝑙𝑛(𝛽𝑝1 − 1)    = −∞, and  

lim
𝛽𝑝1→1

+
 
𝛽𝑝1

𝛽𝑝1 − 1
(𝛽𝑝1 − 2) =  lim

𝛽𝑝1→1
+
[(𝛽𝑝1)

2 − 2𝛽𝑝1] lim
𝛽𝑝1→1

+

1

𝛽𝑝1 − 1
= −∞ 

Thus, taking the right hand side of  (𝟔) to be 𝐺(𝑓1, 𝑓2),  for any {𝑓1, 𝑓2}, there exists an 𝐹−1 such that 

𝑝1 =  𝐹
−1(𝐺(𝑓1, 𝑓2)) with  𝛽𝑝1 > 1.  By symmetry, the same argument applies for 𝑝2. Thus, for the 

second stage game, there exists a unique fare vector (𝑝1
∗,  𝑝2

∗).  

 

 

 

 



Proof of Submodularity – schedule delay model 

From (𝟕𝒃), we have 

𝜕𝑝1
𝜕𝑓1

 =

φ𝑚
𝛽
𝑓1
−(𝑚+1)

(
𝛽𝑝1

(𝛽𝑝1 − 1)
2 +  1)

    (𝟕𝒃) 

Differentiating with respect to 𝑓2, we get 

𝜕2𝑝1
𝜕𝑓1𝜕𝑓2

=
−
φ𝑚
𝛽
𝑓1
−(𝑚+1)

(
𝛽𝑝1

(𝛽𝑝1 − 1)
2 +  1)

2

𝜕

𝜕𝑓2
[

𝛽𝑝1
(𝛽𝑝1 − 1)

2 ] =
−φ𝑚𝑓1

−(𝑚+1)

(
𝛽𝑝1

(𝛽𝑝1 − 1)
2 +  1)

2 (
1 − 𝛽2𝑝1

2

(𝛽𝑝1 − 1)
4 )
𝜕𝑝1
𝜕𝑓2

 

 

𝜕2𝑝1
𝜕𝑓1𝜕𝑓2

=
−φ𝑚𝑓1

−(𝑚+1)

(𝛽𝑝1 + (𝛽𝑝1 − 1)
2 )2

[(1 − 𝛽2𝑝1
2)
𝜕𝑝1
𝜕𝑓2

]    (𝟏𝟓) 

On the right-hand side of (𝟏𝟓), the left multiplicand is < 0 as φ,𝑚 and 𝑓1 are both positive. Now we must 

check the sign of (1 − 𝛽2𝑝1
2)
𝜕𝑝1

𝜕𝑓2
. From (𝟔), we have  

−φ(𝑓1
−𝑚 − 𝑓2

−𝑚) =  
𝛽𝑝1

𝛽𝑝1 − 1
(𝛽𝑝1 − 2) + 𝑙𝑛(𝛽𝑝1 − 1)     

Differentiating both sides with respect to 𝑓2 ,  

−φ𝑚𝑓2
−(𝑚+1) =

𝜕𝑝1
𝜕𝑓2

𝜕

𝜕𝑝1
(
𝛽𝑝1

𝛽𝑝1 − 1
(𝛽𝑝1 − 2) + 𝑙𝑛(𝛽𝑝1 − 1) )  

−φ𝑚𝑓2
−(𝑚+1) = 𝛽

𝜕𝑝1
𝜕𝑓2

(
𝛽𝑝1

(𝛽𝑝1 − 1)
2 
+  1)    (𝟏𝟔) 

Thus, in (𝟏𝟔) above, 
𝜕𝑝1

𝜕𝑓2
< 0, so (1 − 𝛽2𝑝1

2)
𝜕𝑝1

𝜕𝑓2
> 0  if 𝛽𝑝1 > 1. This is the case at equilibrium, so 

from (𝟏𝟓) we have 



𝜕2𝑝1
𝜕𝑓1𝜕𝑓2

< 0    (𝟏𝟕) 

 

From (𝟒), we have 

π1 =  𝑀𝑝1 − 
𝑀

𝛽
− 𝑐𝑓1      

So (𝟏𝟕) also implies 

𝜕2𝜋1
𝜕𝑓1𝜕𝑓2

< 0    (𝟏𝟖) 

Thus we have a 2-player submodular game. This can be converted to a supermodular game by converting 

one airlines strategy from 𝑓1 → −𝑓1.  

Appendix II: Numerical Demonstrations of Concavity and Sub-modularity for 

Monopolistic and 2-player Markets, s-curve model 

Monopolistic markets 

Seats set at 125, α set at 1.29, 𝛽 set at -0.0045, and N varied 

N 𝛽0 𝛽1 𝛽2 R2 

0 1.97601E+20 1.96112E+19 -1.0527E+18 0.0833 

0.1 115910.3649 73790.7562 -2474.2687 0.9402 

0.2 96026.1366 58831.6758 -1947.2537 0.9467 

0.3 83375.1311 50673.6621 -1662.2348 0.952 

0.4 73911.7503 45192.1608 -1472.2083 0.9567 

0.5 66371.9819 41130.2902 -1332.6892 0.9607 

0.6 60078.2569 37944.2811 -1224.2233 0.964 

0.7 54657.0087 35349.6833 -1136.6445 0.9671 

0.8 49882.4819 33179.4721 -1063.9989 0.9698 

0.9 45637.9127 31324.2479 -1002.4305 0.9722 

1 41852.1888 29709.2737 -949.322 0.9743 
 

Seats set at 125, 𝛽 set at -0.0045, N set at 0.5 and α varied 

α 𝛽0 𝛽1 𝛽2 R2 

1 76055.8558 27111.8823 -978.6761 0.9184 

1.1 73018.5278 31772.9456 -1095.7896 0.9394 



1.2 69655.8239 36619.5674 -1218.1896 0.9526 

1.3 65992.8556 41639.7952 -1345.6575 0.9614 

1.4 62053.1236 46822.2043 -1477.9626 0.9675 

1.5 57858.4256 52155.9812 -1614.8682 0.9718 

1.6 53419.0015 57631.3392 -1756.1241 0.975 

1.7 48708.376 63240.4879 -1901.4358 0.9775 

1.8 43740.5398 68974.7085 -2050.5732 0.9795 

1.9 38533.8451 74825.7042 -2203.3234 0.9811 

2 33105.1127 80785.7979 -2359.4833 0.9824 
 

Seats set at 125,  α set at 1.29, N set at 0.5, and 𝛽 varied 

𝛽 𝛽0 𝛽1 𝛽2 R2 

-0.001 428238.2013 198072.3873 -5166.1374 0.9878 

-0.002 214119.1007 94036.1936 -2583.0687 0.9849 

-0.003 142746.0671 59357.4624 -1722.0458 0.9809 

-0.004 107059.5503 42018.0968 -1291.5344 0.9752 

-0.005 85647.6403 31614.4775 -1033.2275 0.9669 

-0.006 71373.0336 24678.7312 -861.0229 0.9545 

-0.007 61176.8859 19724.6268 -738.0196 0.9359 

-0.008 53529.7752 16009.0484 -645.7672 0.9096 

-0.009 47582.0224 13119.1541 -574.0153 0.8804 

-0.01 42823.8201 10807.2387 -516.6137 0.8669 

     
 

α set at 1.29, 𝛽 set at -0.0045, N set at 0.5, and with seats-per-flight varied 

𝑆𝑒𝑎𝑡𝑠 𝛽0 𝛽1 𝛽2 R2 

250 93652.4801 36515.3194 -1158.9365 0.9698 

225 92281.4641 36766.5734 -1168.8284 0.9681 

200 89851.7977 37202.3269 -1185.7855 0.966 

175 85563.681 37956.7956 -1214.8342 0.9633 

150 78455.5194 39169.2144 -1260.6959 0.9609 

125 66371.9819 41130.2902 -1332.6892 0.9607 

100 45877.5358 44144.4919 -1436.3016 0.9669 

75 12697.3648 47810.3588 -1533.0006 0.984 

50 -24046.3907 45542.0565 -1280.9701 0.998 

25 -6873.6566 18536.7611 -138.0535 0.9998 

     
 

2-player markets 

Seats set at 10000, α set at 1.29, 𝛽 set at -0.0045, and N varied 

𝑁 𝛽0 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 R2 
0 16470.0 -34936.0 -425.6 1300.0 -595.7 16470.0 0.923 



0.1 18555.0 -28020.0 -492.3 1058.2 -605.7 18555.0 0.936 

0.2 18942.0 -24161.0 -508.4 918.7 -589.7 18942.0 0.943 

0.3 18838.0 -21489.0 -509.1 820.8 -570.3 18838.0 0.948 

0.4 18532.0 -19467.0 -503.3 746.0 -551.1 18532.0 0.952 

0.5 18135.0 -17856.0 -494.4 686.1 -533.0 18135.0 0.955 

0.6 17695.0 -16527.0 -484.0 636.3 -516.2 17695.0 0.957 

0.7 17239.0 -15403.0 -473.0 594.1 -500.6 17239.0 0.960 

0.8 16779.0 -14436.0 -461.7 557.6 -486.1 16779.0 0.962 

0.9 16323.0 -13591.0 -450.4 525.7 -472.7 16323.0 0.964 

1 15876.0 -12844.0 -439.3 497.4 -460.1 15876.0 0.965 

 

Seats set at 10000, 𝛽 set at -0.0045, N set at 0.5 and α varied 

α 𝛽0 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 R2 
0 11435.0 -11441.0 -418.3 419.0 -303.8 11435.0 0.953 

0.1 13769.0 -13484.0 -447.6 502.9 -376.5 13769.0 0.953 

0.2 16081.0 -15706.0 -473.7 595.5 -456.1 16081.0 0.954 

0.3 18361.0 -18104.0 -496.5 696.5 -541.8 18361.0 0.955 

0.4 20604.0 -20673.0 -516.0 805.8 -633.1 20604.0 0.955 

0.5 22804.0 -23405.0 -532.1 923.0 -729.0 22804.0 0.955 

0.6 24960.0 -26292.0 -545.0 1047.6 -828.9 24960.0 0.954 

0.7 27073.0 -29320.0 -555.0 1179.0 -932.1 27073.0 0.953 

0.8 29147.0 -32478.0 -562.1 1316.8 -1038.2 29147.0 0.952 

0.9 31186.0 -35751.0 -566.7 1460.2 -1146.7 31186.0 0.951 

1 33195.0 -39125.0 -569.1 1608.8 -1257.4 33195.0 0.950 

 

Seats set at 10000,  α set at 1.29, N set at 0.5, and 𝛽 varied 

𝛽 𝛽0 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 R2 
-0.001 549860.0 116610.0 -80348.0 -2224.9 3087.0 -2398.5 0.975 

-0.002 274920.0 53307.0 -40174.0 -1112.5 1543.5 -1199.3 0.969 

-0.003 183290.0 32204.0 -26783.0 -741.6 1029.0 -799.5 0.963 

-0.004 137470.0 21652.0 -20088.0 -556.2 771.8 -599.6 0.957 

-0.005 109980.0 15321.0 -16071.0 -444.9 617.5 -479.7 0.953 

-0.006 91640.0 11102.0 -13391.0 -370.8 514.5 -399.8 0.954 

-0.007 78548.0 8087.7 -11478.0 -317.8 441.0 -342.7 0.954 

-0.008 68730.0 5826.6 -10044.0 -278.1 385.9 -299.9 0.963 

-0.009 61095.0 4067.8 -8927.9 -247.2 343.0 -266.5 0.969 

-0.01 54988.0 2660.7 -8035.6 -222.5 308.7 -239.9 0.975 

        
α set at 1.29, 𝛽 set at -0.0045, N set at 0.5, and with seats-per-flight varied 

𝑆𝑒𝑎𝑡𝑠 𝛽0 𝛽1 𝛽2 𝛽3 𝛽4 𝛽5 R2 
250 122200.0 18135.0 -17856.0 -494.4 686.1 -533.0 0.955 

225 122250.0 18130.0 -17861.0 -494.2 686.2 -532.9 0.955 

200 122400.0 18115.0 -17876.0 -493.9 686.6 -532.4 0.955 



175 122640.0 18095.0 -17901.0 -493.4 687.2 -531.6 0.955 

150 123470.0 18030.0 -17989.0 -492.1 689.6 -529.0 0.955 

125 125340.0 17925.0 -18214.0 -490.9 696.0 -523.3 0.950 

100 129430.0 17885.0 -18838.0 -495.5 716.3 -514.1 0.939 

75 136710.0 18277.0 -20301.0 -512.8 773.0 -518.1 0.928 

50 142620.0 20224.0 -22355.0 -567.2 865.2 -578.9 0.927 

25 104880.0 27814.0 -18929.0 -743.5 773.0 -846.6 0.969 
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